MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-topon Unicode version

Definition df-topon 16639
Description: Define the set of topologies with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Assertion
Ref Expression
df-topon  |- TopOn  =  ( b  e.  _V  |->  { j  e.  Top  | 
b  =  U. j } )
Distinct variable group:    j, b

Detailed syntax breakdown of Definition df-topon
StepHypRef Expression
1 ctopon 16632 . 2  class TopOn
2 vb . . 3  set  b
3 cvv 2788 . . 3  class  _V
42cv 1622 . . . . 5  class  b
5 vj . . . . . . 7  set  j
65cv 1622 . . . . . 6  class  j
76cuni 3827 . . . . 5  class  U. j
84, 7wceq 1623 . . . 4  wff  b  = 
U. j
9 ctop 16631 . . . 4  class  Top
108, 5, 9crab 2547 . . 3  class  { j  e.  Top  |  b  =  U. j }
112, 3, 10cmpt 4077 . 2  class  ( b  e.  _V  |->  { j  e.  Top  |  b  =  U. j } )
121, 11wceq 1623 1  wff TopOn  =  ( b  e.  _V  |->  { j  e.  Top  | 
b  =  U. j } )
Colors of variables: wff set class
This definition is referenced by:  istopon  16663
  Copyright terms: Public domain W3C validator