MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-tp Structured version   Unicode version

Definition df-tp 3814
Description: Define unordered triple of classes. Definition of [Enderton] p. 19. (Contributed by NM, 9-Apr-1994.)
Assertion
Ref Expression
df-tp  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )

Detailed syntax breakdown of Definition df-tp
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
3 cC . . 3  class  C
41, 2, 3ctp 3808 . 2  class  { A ,  B ,  C }
51, 2cpr 3807 . . 3  class  { A ,  B }
63csn 3806 . . 3  class  { C }
75, 6cun 3310 . 2  class  ( { A ,  B }  u.  { C } )
84, 7wceq 1652 1  wff  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
Colors of variables: wff set class
This definition is referenced by:  eltpg  3843  raltpg  3851  rextpg  3852  tpeq1  3884  tpeq2  3885  tpeq3  3886  tpcoma  3892  tpass  3894  qdass  3895  tpidm12  3897  diftpsn3  3929  tpprceq3  3930  tppreqb  3931  snsstp1  3941  snsstp2  3942  snsstp3  3943  sstp  3955  tpss  3956  tpssi  3957  ord3ex  4381  tpex  4700  fr3nr  4752  dmtpop  5338  funtpg  5493  funtp  5495  fntpg  5498  ftpg  5908  fvtp1  5931  fvtp1g  5934  tpfi  7374  fztp  11094  hashtplei  11682  hashtpg  11683  strlemor3  13550  strle3  13554  lsptpcl  16047  perfectlem2  21006  constr2spthlem1  21586  ex-un  21724  ex-ss  21727  ex-pw  21729  sltsolem1  25615  bpoly3  26096  dvh4dimlem  32168  dvhdimlem  32169  dvh4dimN  32172
  Copyright terms: Public domain W3C validator