MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-v Unicode version

Definition df-v 2765
Description: Define the universal class. Definition 5.20 of [TakeutiZaring] p. 21. Also Definition 2.9 of [Quine] p. 19. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-v  |-  _V  =  { x  |  x  =  x }

Detailed syntax breakdown of Definition df-v
StepHypRef Expression
1 cvv 2763 . 2  class  _V
2 vx . . . 4  set  x
32, 2weq 1620 . . 3  wff  x  =  x
43, 2cab 2244 . 2  class  { x  |  x  =  x }
51, 4wceq 1619 1  wff  _V  =  { x  |  x  =  x }
Colors of variables: wff set class
This definition is referenced by:  vex  2766  int0  3850  ruv  7282  foo3  22983  domep  23518  elnev  27006
  Copyright terms: Public domain W3C validator