MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-v Unicode version

Definition df-v 2790
Description: Define the universal class. Definition 5.20 of [TakeutiZaring] p. 21. Also Definition 2.9 of [Quine] p. 19. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-v  |-  _V  =  { x  |  x  =  x }

Detailed syntax breakdown of Definition df-v
StepHypRef Expression
1 cvv 2788 . 2  class  _V
2 vx . . . 4  set  x
32, 2weq 1624 . . 3  wff  x  =  x
43, 2cab 2269 . 2  class  { x  |  x  =  x }
51, 4wceq 1623 1  wff  _V  =  { x  |  x  =  x }
Colors of variables: wff set class
This definition is referenced by:  vex  2791  int0  3876  ruv  7314  foo3  23023  domep  23560  elnev  27050
  Copyright terms: Public domain W3C validator