MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-we Structured version   Unicode version

Definition df-we 4543
Description: Define the well-ordering predicate. For an alternate definition, see dfwe2 4762. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
df-we  |-  ( R  We  A  <->  ( R  Fr  A  /\  R  Or  A ) )

Detailed syntax breakdown of Definition df-we
StepHypRef Expression
1 cA . . 3  class  A
2 cR . . 3  class  R
31, 2wwe 4540 . 2  wff  R  We  A
41, 2wfr 4538 . . 3  wff  R  Fr  A
51, 2wor 4502 . . 3  wff  R  Or  A
64, 5wa 359 . 2  wff  ( R  Fr  A  /\  R  Or  A )
73, 6wb 177 1  wff  ( R  We  A  <->  ( R  Fr  A  /\  R  Or  A ) )
Colors of variables: wff set class
This definition is referenced by:  nfwe  4558  wess  4569  weeq1  4570  weeq2  4571  wefr  4572  weso  4573  we0  4577  dfwe2  4762  weinxp  4945  wesn  4949  isowe  6069  isowe2  6070  wexp  6460  wofi  7356  dford5reg  25409
  Copyright terms: Public domain W3C validator