MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-we Unicode version

Definition df-we 4535
Description: Define the well-ordering predicate. For an alternate definition, see dfwe2 4753. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
df-we  |-  ( R  We  A  <->  ( R  Fr  A  /\  R  Or  A ) )

Detailed syntax breakdown of Definition df-we
StepHypRef Expression
1 cA . . 3  class  A
2 cR . . 3  class  R
31, 2wwe 4532 . 2  wff  R  We  A
41, 2wfr 4530 . . 3  wff  R  Fr  A
51, 2wor 4494 . . 3  wff  R  Or  A
64, 5wa 359 . 2  wff  ( R  Fr  A  /\  R  Or  A )
73, 6wb 177 1  wff  ( R  We  A  <->  ( R  Fr  A  /\  R  Or  A ) )
Colors of variables: wff set class
This definition is referenced by:  nfwe  4550  wess  4561  weeq1  4562  weeq2  4563  wefr  4564  weso  4565  we0  4569  dfwe2  4753  weinxp  4936  wesn  4940  isowe  6060  isowe2  6061  wexp  6451  wofi  7347  dford5reg  25393
  Copyright terms: Public domain W3C validator