Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-xadd Structured version   Unicode version

 Description: Define addition over extended real numbers. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
Distinct variable group:   ,

Detailed syntax breakdown of Definition df-xadd
StepHypRef Expression
2 vx . . 3
3 vy . . 3
4 cxr 9111 . . 3
52cv 1651 . . . . 5
6 cpnf 9109 . . . . 5
75, 6wceq 1652 . . . 4
83cv 1651 . . . . . 6
9 cmnf 9110 . . . . . 6
108, 9wceq 1652 . . . . 5
11 cc0 8982 . . . . 5
1210, 11, 6cif 3731 . . . 4
135, 9wceq 1652 . . . . 5
148, 6wceq 1652 . . . . . 6
1514, 11, 9cif 3731 . . . . 5
16 caddc 8985 . . . . . . . 8
175, 8, 16co 6073 . . . . . . 7
1810, 9, 17cif 3731 . . . . . 6
1914, 6, 18cif 3731 . . . . 5
2013, 15, 19cif 3731 . . . 4
217, 12, 20cif 3731 . . 3
222, 3, 4, 4, 21cmpt2 6075 . 2
231, 22wceq 1652 1
 Colors of variables: wff set class This definition is referenced by:  xaddval  10801  xaddf  10802
 Copyright terms: Public domain W3C validator