MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac2 Unicode version

Theorem dfac2 7753
Description: Axiom of Choice (first form) of [Enderton] p. 49 implies of our Axiom of Choice (in the form of ac3 8084). The proof does not make use of AC. Note that the Axiom of Regularity is used by the proof. Specifically, elirrv 7307 and preleq 7314 that are referenced in the proof each make use of Regularity for their derivations. (The reverse implication can be derived without using Regularity; see dfac2a 7752.) TODO: Fix label in comment, and put label changes into list at top of set.mm. (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
dfac2  |-  (CHOICE  <->  A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) )
Distinct variable group:    x, y, z, w, v

Proof of Theorem dfac2
Dummy variables  u  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac3 7744 . . 3  |-  (CHOICE  <->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
2 nfra1 2594 . . . . . . 7  |-  F/ z A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )
3 rsp 2604 . . . . . . . . . . . . 13  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
z  e.  x  -> 
( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
4 eqid 2284 . . . . . . . . . . . . . . . . . . 19  |-  z  =  z
5 neeq1 2455 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  z  ->  (
u  =/=  (/)  <->  z  =/=  (/) ) )
6 eqeq1 2290 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  z  ->  (
u  =  z  <->  z  =  z ) )
75, 6anbi12d 691 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  =  z  ->  (
( u  =/=  (/)  /\  u  =  z )  <->  ( z  =/=  (/)  /\  z  =  z ) ) )
87rspcev 2885 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  x  /\  ( z  =/=  (/)  /\  z  =  z ) )  ->  E. u  e.  x  ( u  =/=  (/)  /\  u  =  z ) )
94, 8mpanr2 665 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  x  /\  z  =/=  (/) )  ->  E. u  e.  x  ( u  =/=  (/)  /\  u  =  z ) )
10 fveq2 5486 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( u  =  z  ->  (
f `  u )  =  ( f `  z ) )
1110preq1d 3713 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  z  ->  { ( f `  u ) ,  u }  =  { ( f `  z ) ,  u } )
12 preq2 3708 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  z  ->  { ( f `  z ) ,  u }  =  { ( f `  z ) ,  z } )
1311, 12eqtr2d 2317 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  =  z  ->  { ( f `  z ) ,  z }  =  { ( f `  u ) ,  u } )
1413anim2i 552 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  =/=  (/)  /\  u  =  z )  -> 
( u  =/=  (/)  /\  {
( f `  z
) ,  z }  =  { ( f `
 u ) ,  u } ) )
1514reximi 2651 . . . . . . . . . . . . . . . . . 18  |-  ( E. u  e.  x  ( u  =/=  (/)  /\  u  =  z )  ->  E. u  e.  x  ( u  =/=  (/)  /\  {
( f `  z
) ,  z }  =  { ( f `
 u ) ,  u } ) )
169, 15syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  x  /\  z  =/=  (/) )  ->  E. u  e.  x  ( u  =/=  (/)  /\  { ( f `  z ) ,  z }  =  { ( f `  u ) ,  u } ) )
17 prex 4216 . . . . . . . . . . . . . . . . . 18  |-  { ( f `  z ) ,  z }  e.  _V
18 eqeq1 2290 . . . . . . . . . . . . . . . . . . . 20  |-  ( g  =  { ( f `
 z ) ,  z }  ->  (
g  =  { ( f `  u ) ,  u }  <->  { (
f `  z ) ,  z }  =  { ( f `  u ) ,  u } ) )
1918anbi2d 684 . . . . . . . . . . . . . . . . . . 19  |-  ( g  =  { ( f `
 z ) ,  z }  ->  (
( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } )  <->  ( u  =/=  (/)  /\  { ( f `  z ) ,  z }  =  { ( f `  u ) ,  u } ) ) )
2019rexbidv 2565 . . . . . . . . . . . . . . . . . 18  |-  ( g  =  { ( f `
 z ) ,  z }  ->  ( E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } )  <->  E. u  e.  x  ( u  =/=  (/)  /\  { ( f `  z ) ,  z }  =  { ( f `  u ) ,  u } ) ) )
2117, 20elab 2915 . . . . . . . . . . . . . . . . 17  |-  ( { ( f `  z
) ,  z }  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  <->  E. u  e.  x  ( u  =/=  (/)  /\  { ( f `  z ) ,  z }  =  { ( f `  u ) ,  u } ) )
2216, 21sylibr 203 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  x  /\  z  =/=  (/) )  ->  { ( f `  z ) ,  z }  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) } )
23 vex 2792 . . . . . . . . . . . . . . . . . 18  |-  z  e. 
_V
2423prid2 3736 . . . . . . . . . . . . . . . . 17  |-  z  e. 
{ ( f `  z ) ,  z }
25 fvex 5500 . . . . . . . . . . . . . . . . . 18  |-  ( f `
 z )  e. 
_V
2625prid1 3735 . . . . . . . . . . . . . . . . 17  |-  ( f `
 z )  e. 
{ ( f `  z ) ,  z }
2724, 26pm3.2i 441 . . . . . . . . . . . . . . . 16  |-  ( z  e.  { ( f `
 z ) ,  z }  /\  (
f `  z )  e.  { ( f `  z ) ,  z } )
28 eleq2 2345 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  { ( f `
 z ) ,  z }  ->  (
z  e.  v  <->  z  e.  { ( f `  z
) ,  z } ) )
29 eleq2 2345 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  { ( f `
 z ) ,  z }  ->  (
( f `  z
)  e.  v  <->  ( f `  z )  e.  {
( f `  z
) ,  z } ) )
3028, 29anbi12d 691 . . . . . . . . . . . . . . . . 17  |-  ( v  =  { ( f `
 z ) ,  z }  ->  (
( z  e.  v  /\  ( f `  z )  e.  v )  <->  ( z  e. 
{ ( f `  z ) ,  z }  /\  ( f `
 z )  e. 
{ ( f `  z ) ,  z } ) ) )
3130rspcev 2885 . . . . . . . . . . . . . . . 16  |-  ( ( { ( f `  z ) ,  z }  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  /\  (
z  e.  { ( f `  z ) ,  z }  /\  ( f `  z
)  e.  { ( f `  z ) ,  z } ) )  ->  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  ( f `  z
)  e.  v ) )
3222, 27, 31sylancl 643 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  x  /\  z  =/=  (/) )  ->  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  ( f `  z
)  e.  v ) )
33 eleq1 2344 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( f `  z )  ->  (
w  e.  z  <->  ( f `  z )  e.  z ) )
34 eleq1 2344 . . . . . . . . . . . . . . . . . . 19  |-  ( w  =  ( f `  z )  ->  (
w  e.  v  <->  ( f `  z )  e.  v ) )
3534anbi2d 684 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  ( f `  z )  ->  (
( z  e.  v  /\  w  e.  v )  <->  ( z  e.  v  /\  ( f `
 z )  e.  v ) ) )
3635rexbidv 2565 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( f `  z )  ->  ( E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  ( z  e.  v  /\  w  e.  v )  <->  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  ( f `  z
)  e.  v ) ) )
3733, 36anbi12d 691 . . . . . . . . . . . . . . . 16  |-  ( w  =  ( f `  z )  ->  (
( w  e.  z  /\  E. v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  <->  ( ( f `
 z )  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  ( f `  z
)  e.  v ) ) ) )
3825, 37spcev 2876 . . . . . . . . . . . . . . 15  |-  ( ( ( f `  z
)  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  ( z  e.  v  /\  (
f `  z )  e.  v ) )  ->  E. w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
3932, 38sylan2 460 . . . . . . . . . . . . . 14  |-  ( ( ( f `  z
)  e.  z  /\  ( z  e.  x  /\  z  =/=  (/) ) )  ->  E. w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
4039ex 423 . . . . . . . . . . . . 13  |-  ( ( f `  z )  e.  z  ->  (
( z  e.  x  /\  z  =/=  (/) )  ->  E. w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) )
413, 40syl8 65 . . . . . . . . . . . 12  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
z  e.  x  -> 
( z  =/=  (/)  ->  (
( z  e.  x  /\  z  =/=  (/) )  ->  E. w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) ) ) )
4241imp3a 420 . . . . . . . . . . 11  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
( z  e.  x  /\  z  =/=  (/) )  -> 
( ( z  e.  x  /\  z  =/=  (/) )  ->  E. w
( w  e.  z  /\  E. v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) ) )
4342pm2.43d 44 . . . . . . . . . 10  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
( z  e.  x  /\  z  =/=  (/) )  ->  E. w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) )
44 df-rex 2550 . . . . . . . . . . . . . 14  |-  ( E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  ( z  e.  v  /\  w  e.  v )  <->  E. v
( v  e.  {
g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  /\  ( z  e.  v  /\  w  e.  v ) ) )
45 vex 2792 . . . . . . . . . . . . . . . . . . . 20  |-  v  e. 
_V
46 eqeq1 2290 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( g  =  v  ->  (
g  =  { ( f `  u ) ,  u }  <->  v  =  { ( f `  u ) ,  u } ) )
4746anbi2d 684 . . . . . . . . . . . . . . . . . . . . 21  |-  ( g  =  v  ->  (
( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } )  <->  ( u  =/=  (/)  /\  v  =  { ( f `  u ) ,  u } ) ) )
4847rexbidv 2565 . . . . . . . . . . . . . . . . . . . 20  |-  ( g  =  v  ->  ( E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } )  <->  E. u  e.  x  ( u  =/=  (/)  /\  v  =  { ( f `  u ) ,  u } ) ) )
4945, 48elab 2915 . . . . . . . . . . . . . . . . . . 19  |-  ( v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  <->  E. u  e.  x  ( u  =/=  (/)  /\  v  =  { ( f `  u ) ,  u } ) )
50 neeq1 2455 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( z  =  u  ->  (
z  =/=  (/)  <->  u  =/=  (/) ) )
51 fveq2 5486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( z  =  u  ->  (
f `  z )  =  ( f `  u ) )
5251eleq1d 2350 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( z  =  u  ->  (
( f `  z
)  e.  z  <->  ( f `  u )  e.  z ) )
53 eleq2 2345 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( z  =  u  ->  (
( f `  u
)  e.  z  <->  ( f `  u )  e.  u
) )
5452, 53bitrd 244 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( z  =  u  ->  (
( f `  z
)  e.  z  <->  ( f `  u )  e.  u
) )
5550, 54imbi12d 311 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( z  =  u  ->  (
( z  =/=  (/)  ->  (
f `  z )  e.  z )  <->  ( u  =/=  (/)  ->  ( f `  u )  e.  u
) ) )
5655rspccv 2882 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
u  e.  x  -> 
( u  =/=  (/)  ->  (
f `  u )  e.  u ) ) )
57 elirrv 7307 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  -.  w  e.  w
58 eleq2 2345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( w  =  z  ->  (
w  e.  w  <->  w  e.  z ) )
5957, 58mtbii 293 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( w  =  z  ->  -.  w  e.  z )
6059con2i 112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( w  e.  z  ->  -.  w  =  z )
61 vex 2792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  w  e. 
_V
62 fvex 5500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( f `
 u )  e. 
_V
63 vex 2792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  u  e. 
_V
6461, 23, 62, 63prel12 3790 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( -.  w  =  z  -> 
( { w ,  z }  =  {
( f `  u
) ,  u }  <->  ( w  e.  { ( f `  u ) ,  u }  /\  z  e.  { (
f `  u ) ,  u } ) ) )
65 ancom 437 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( w  e.  v  /\  z  e.  v )  <->  ( z  e.  v  /\  w  e.  v )
)
66 eleq2 2345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
w  e.  v  <->  w  e.  { ( f `  u
) ,  u }
) )
67 eleq2 2345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
z  e.  v  <->  z  e.  { ( f `  u
) ,  u }
) )
6866, 67anbi12d 691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
( w  e.  v  /\  z  e.  v )  <->  ( w  e. 
{ ( f `  u ) ,  u }  /\  z  e.  {
( f `  u
) ,  u }
) ) )
6965, 68syl5rbbr 251 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
( w  e.  {
( f `  u
) ,  u }  /\  z  e.  { ( f `  u ) ,  u } )  <-> 
( z  e.  v  /\  w  e.  v ) ) )
7064, 69sylan9bbr 681 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( v  =  { ( f `  u ) ,  u }  /\  -.  w  =  z
)  ->  ( {
w ,  z }  =  { ( f `
 u ) ,  u }  <->  ( z  e.  v  /\  w  e.  v ) ) )
7160, 70sylan2 460 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( v  =  { ( f `  u ) ,  u }  /\  w  e.  z )  ->  ( { w ,  z }  =  {
( f `  u
) ,  u }  <->  ( z  e.  v  /\  w  e.  v )
) )
7271adantrr 697 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( v  =  { ( f `  u ) ,  u }  /\  ( w  e.  z  /\  ( f `  u
)  e.  u ) )  ->  ( {
w ,  z }  =  { ( f `
 u ) ,  u }  <->  ( z  e.  v  /\  w  e.  v ) ) )
7372pm5.32da 622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
( ( w  e.  z  /\  ( f `
 u )  e.  u )  /\  {
w ,  z }  =  { ( f `
 u ) ,  u } )  <->  ( (
w  e.  z  /\  ( f `  u
)  e.  u )  /\  ( z  e.  v  /\  w  e.  v ) ) ) )
7461, 23, 62, 63preleq 7314 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( w  e.  z  /\  ( f `  u )  e.  u
)  /\  { w ,  z }  =  { ( f `  u ) ,  u } )  ->  (
w  =  ( f `
 u )  /\  z  =  u )
)
7573, 74syl6bir 220 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
( ( w  e.  z  /\  ( f `
 u )  e.  u )  /\  (
z  e.  v  /\  w  e.  v )
)  ->  ( w  =  ( f `  u )  /\  z  =  u ) ) )
7651eqeq2d 2295 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( z  =  u  ->  (
w  =  ( f `
 z )  <->  w  =  ( f `  u
) ) )
7776biimparc 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( w  =  ( f `
 u )  /\  z  =  u )  ->  w  =  ( f `
 z ) )
7875, 77syl6 29 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
( ( w  e.  z  /\  ( f `
 u )  e.  u )  /\  (
z  e.  v  /\  w  e.  v )
)  ->  w  =  ( f `  z
) ) )
7978exp4c 591 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
w  e.  z  -> 
( ( f `  u )  e.  u  ->  ( ( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z ) ) ) ) )
8079com13 74 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f `  u )  e.  u  ->  (
w  e.  z  -> 
( v  =  {
( f `  u
) ,  u }  ->  ( ( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z ) ) ) ) )
8156, 80syl8 65 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
u  e.  x  -> 
( u  =/=  (/)  ->  (
w  e.  z  -> 
( v  =  {
( f `  u
) ,  u }  ->  ( ( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z ) ) ) ) ) ) )
8281com4r 80 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  e.  z  ->  ( A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
u  e.  x  -> 
( u  =/=  (/)  ->  (
v  =  { ( f `  u ) ,  u }  ->  ( ( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z
) ) ) ) ) ) )
8382imp 418 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( w  e.  z  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  -> 
( u  e.  x  ->  ( u  =/=  (/)  ->  (
v  =  { ( f `  u ) ,  u }  ->  ( ( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z
) ) ) ) ) )
8483imp4a 572 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( w  e.  z  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  -> 
( u  e.  x  ->  ( ( u  =/=  (/)  /\  v  =  {
( f `  u
) ,  u }
)  ->  ( (
z  e.  v  /\  w  e.  v )  ->  w  =  ( f `
 z ) ) ) ) )
8584com3l 75 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  e.  x  ->  (
( u  =/=  (/)  /\  v  =  { ( f `  u ) ,  u } )  ->  (
( w  e.  z  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )  ->  (
( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z
) ) ) ) )
8685rexlimiv 2662 . . . . . . . . . . . . . . . . . . 19  |-  ( E. u  e.  x  ( u  =/=  (/)  /\  v  =  { ( f `  u ) ,  u } )  ->  (
( w  e.  z  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )  ->  (
( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z
) ) ) )
8749, 86sylbi 187 . . . . . . . . . . . . . . . . . 18  |-  ( v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  ->  ( ( w  e.  z  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )  ->  (
( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z
) ) ) )
8887exp3a 425 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  ->  ( w  e.  z  -> 
( A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  ( (
z  e.  v  /\  w  e.  v )  ->  w  =  ( f `
 z ) ) ) ) )
8988com13 74 . . . . . . . . . . . . . . . 16  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
w  e.  z  -> 
( v  e.  {
g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  ->  ( ( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z
) ) ) ) )
9089imp4b 573 . . . . . . . . . . . . . . 15  |-  ( ( A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )  /\  w  e.  z )  ->  (
( v  e.  {
g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  /\  ( z  e.  v  /\  w  e.  v ) )  ->  w  =  ( f `  z ) ) )
9190exlimdv 1665 . . . . . . . . . . . . . 14  |-  ( ( A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )  /\  w  e.  z )  ->  ( E. v ( v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  /\  ( z  e.  v  /\  w  e.  v ) )  ->  w  =  ( f `  z ) ) )
9244, 91syl5bi 208 . . . . . . . . . . . . 13  |-  ( ( A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )  /\  w  e.  z )  ->  ( E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  ( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z ) ) )
9392expimpd 586 . . . . . . . . . . . 12  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
( w  e.  z  /\  E. v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  ->  w  =  ( f `  z
) ) )
9493alrimiv 1617 . . . . . . . . . . 11  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  A. w
( ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  ->  w  =  ( f `  z
) ) )
95 mo2icl 2945 . . . . . . . . . . 11  |-  ( A. w ( ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  ->  w  =  ( f `  z
) )  ->  E* w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
9694, 95syl 15 . . . . . . . . . 10  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  E* w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
9743, 96jctird 528 . . . . . . . . 9  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
( z  e.  x  /\  z  =/=  (/) )  -> 
( E. w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  ( z  e.  v  /\  w  e.  v ) )  /\  E* w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) ) )
98 df-reu 2551 . . . . . . . . . 10  |-  ( E! w  e.  z  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )  <->  E! w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
99 eu5 2182 . . . . . . . . . 10  |-  ( E! w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  <->  ( E. w
( w  e.  z  /\  E. v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  /\  E* w
( w  e.  z  /\  E. v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) )
10098, 99bitri 240 . . . . . . . . 9  |-  ( E! w  e.  z  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )  <->  ( E. w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  /\  E* w
( w  e.  z  /\  E. v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) )
10197, 100syl6ibr 218 . . . . . . . 8  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
( z  e.  x  /\  z  =/=  (/) )  ->  E! w  e.  z  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  ( z  e.  v  /\  w  e.  v ) ) )
102101exp3a 425 . . . . . . 7  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
z  e.  x  -> 
( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) )
1032, 102ralrimi 2625 . . . . . 6  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
104 vex 2792 . . . . . . . . . . . 12  |-  f  e. 
_V
105104rnex 4941 . . . . . . . . . . 11  |-  ran  f  e.  _V
106 p0ex 4196 . . . . . . . . . . 11  |-  { (/) }  e.  _V
107105, 106unex 4517 . . . . . . . . . 10  |-  ( ran  f  u.  { (/) } )  e.  _V
108 vex 2792 . . . . . . . . . 10  |-  x  e. 
_V
109107, 108unex 4517 . . . . . . . . 9  |-  ( ( ran  f  u.  { (/)
} )  u.  x
)  e.  _V
110109pwex 4192 . . . . . . . 8  |-  ~P (
( ran  f  u.  {
(/) } )  u.  x
)  e.  _V
111 ssun1 3339 . . . . . . . . . . . . . . 15  |-  ( ran  f  u.  { (/) } )  C_  ( ( ran  f  u.  { (/) } )  u.  x )
112 fvrn0 5512 . . . . . . . . . . . . . . 15  |-  ( f `
 u )  e.  ( ran  f  u. 
{ (/) } )
113111, 112sselii 3178 . . . . . . . . . . . . . 14  |-  ( f `
 u )  e.  ( ( ran  f  u.  { (/) } )  u.  x )
114 elun2 3344 . . . . . . . . . . . . . 14  |-  ( u  e.  x  ->  u  e.  ( ( ran  f  u.  { (/) } )  u.  x ) )
115 prssi 3772 . . . . . . . . . . . . . 14  |-  ( ( ( f `  u
)  e.  ( ( ran  f  u.  { (/)
} )  u.  x
)  /\  u  e.  ( ( ran  f  u.  { (/) } )  u.  x ) )  ->  { ( f `  u ) ,  u }  C_  ( ( ran  f  u.  { (/) } )  u.  x ) )
116113, 114, 115sylancr 644 . . . . . . . . . . . . 13  |-  ( u  e.  x  ->  { ( f `  u ) ,  u }  C_  ( ( ran  f  u.  { (/) } )  u.  x ) )
117 prex 4216 . . . . . . . . . . . . . 14  |-  { ( f `  u ) ,  u }  e.  _V
118117elpw 3632 . . . . . . . . . . . . 13  |-  ( { ( f `  u
) ,  u }  e.  ~P ( ( ran  f  u.  { (/) } )  u.  x )  <->  { ( f `  u ) ,  u }  C_  ( ( ran  f  u.  { (/) } )  u.  x ) )
119116, 118sylibr 203 . . . . . . . . . . . 12  |-  ( u  e.  x  ->  { ( f `  u ) ,  u }  e.  ~P ( ( ran  f  u.  { (/) } )  u.  x ) )
120 eleq1 2344 . . . . . . . . . . . 12  |-  ( g  =  { ( f `
 u ) ,  u }  ->  (
g  e.  ~P (
( ran  f  u.  {
(/) } )  u.  x
)  <->  { ( f `  u ) ,  u }  e.  ~P (
( ran  f  u.  {
(/) } )  u.  x
) ) )
121119, 120syl5ibrcom 213 . . . . . . . . . . 11  |-  ( u  e.  x  ->  (
g  =  { ( f `  u ) ,  u }  ->  g  e.  ~P ( ( ran  f  u.  { (/)
} )  u.  x
) ) )
122121adantld 453 . . . . . . . . . 10  |-  ( u  e.  x  ->  (
( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } )  ->  g  e.  ~P ( ( ran  f  u.  { (/) } )  u.  x ) ) )
123122rexlimiv 2662 . . . . . . . . 9  |-  ( E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } )  ->  g  e.  ~P ( ( ran  f  u.  { (/) } )  u.  x ) )
124123abssi 3249 . . . . . . . 8  |-  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  C_  ~P ( ( ran  f  u.  { (/) } )  u.  x )
125110, 124ssexi 4160 . . . . . . 7  |-  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  e.  _V
126 rexeq 2738 . . . . . . . . . 10  |-  ( y  =  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  ->  ( E. v  e.  y  ( z  e.  v  /\  w  e.  v )  <->  E. v  e.  {
g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
127126reubidv 2725 . . . . . . . . 9  |-  ( y  =  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  ->  ( E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v )  <->  E! w  e.  z  E. v  e.  {
g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
128127imbi2d 307 . . . . . . . 8  |-  ( y  =  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  ->  ( ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
)  <->  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) )
129128ralbidv 2564 . . . . . . 7  |-  ( y  =  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  ->  ( A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
)  <->  A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) )
130125, 129spcev 2876 . . . . . 6  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  E! w  e.  z  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
) )
131103, 130syl 15 . . . . 5  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
) )
132131exlimiv 1667 . . . 4  |-  ( E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
) )
133132alimi 1546 . . 3  |-  ( A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) )
1341, 133sylbi 187 . 2  |-  (CHOICE  ->  A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) )
135 dfac2a 7752 . 2  |-  ( A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  -> CHOICE )
136134, 135impbii 180 1  |-  (CHOICE  <->  A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527   E.wex 1528    = wceq 1623    e. wcel 1685   E!weu 2144   E*wmo 2145   {cab 2270    =/= wne 2447   A.wral 2544   E.wrex 2545   E!wreu 2546    u. cun 3151    C_ wss 3153   (/)c0 3456   ~Pcpw 3626   {csn 3641   {cpr 3642   ran crn 4689   ` cfv 5221  CHOICEwac 7738
This theorem is referenced by:  dfac7  7754
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-reg 7302
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-eprel 4304  df-id 4308  df-fr 4351  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-fv 5229  df-iota 6253  df-riota 6300  df-ac 7739
  Copyright terms: Public domain W3C validator