MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac2 Unicode version

Theorem dfac2 7725
Description: Axiom of Choice (first form) of [Enderton] p. 49 implies of our Axiom of Choice (in the form of ac3 8056). The proof does not make use of AC. Note that the Axiom of Regularity is used by the proof. Specifically, elirrv 7279 and preleq 7286 that are referenced in the proof each make use of Regularity for their derivations. (The reverse implication can be derived without using Regularity; see dfac2a 7724.) TODO: Fix label in comment, and put label changes into list at top of set.mm. (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
dfac2  |-  (CHOICE  <->  A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) )
Distinct variable group:    x, y, z, w, v

Proof of Theorem dfac2
StepHypRef Expression
1 dfac3 7716 . . 3  |-  (CHOICE  <->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
2 nfra1 2568 . . . . . . 7  |-  F/ z A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )
3 ra4 2578 . . . . . . . . . . . . 13  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
z  e.  x  -> 
( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
4 eqid 2258 . . . . . . . . . . . . . . . . . . 19  |-  z  =  z
5 neeq1 2429 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  z  ->  (
u  =/=  (/)  <->  z  =/=  (/) ) )
6 eqeq1 2264 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  z  ->  (
u  =  z  <->  z  =  z ) )
75, 6anbi12d 694 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  =  z  ->  (
( u  =/=  (/)  /\  u  =  z )  <->  ( z  =/=  (/)  /\  z  =  z ) ) )
87rcla4ev 2859 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  x  /\  ( z  =/=  (/)  /\  z  =  z ) )  ->  E. u  e.  x  ( u  =/=  (/)  /\  u  =  z ) )
94, 8mpanr2 668 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  x  /\  z  =/=  (/) )  ->  E. u  e.  x  ( u  =/=  (/)  /\  u  =  z ) )
10 fveq2 5458 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( u  =  z  ->  (
f `  u )  =  ( f `  z ) )
1110preq1d 3686 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  z  ->  { ( f `  u ) ,  u }  =  { ( f `  z ) ,  u } )
12 preq2 3681 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  z  ->  { ( f `  z ) ,  u }  =  { ( f `  z ) ,  z } )
1311, 12eqtr2d 2291 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  =  z  ->  { ( f `  z ) ,  z }  =  { ( f `  u ) ,  u } )
1413anim2i 555 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  =/=  (/)  /\  u  =  z )  -> 
( u  =/=  (/)  /\  {
( f `  z
) ,  z }  =  { ( f `
 u ) ,  u } ) )
1514reximi 2625 . . . . . . . . . . . . . . . . . 18  |-  ( E. u  e.  x  ( u  =/=  (/)  /\  u  =  z )  ->  E. u  e.  x  ( u  =/=  (/)  /\  {
( f `  z
) ,  z }  =  { ( f `
 u ) ,  u } ) )
169, 15syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  x  /\  z  =/=  (/) )  ->  E. u  e.  x  ( u  =/=  (/)  /\  { ( f `  z ) ,  z }  =  { ( f `  u ) ,  u } ) )
17 prex 4189 . . . . . . . . . . . . . . . . . 18  |-  { ( f `  z ) ,  z }  e.  _V
18 eqeq1 2264 . . . . . . . . . . . . . . . . . . . 20  |-  ( g  =  { ( f `
 z ) ,  z }  ->  (
g  =  { ( f `  u ) ,  u }  <->  { (
f `  z ) ,  z }  =  { ( f `  u ) ,  u } ) )
1918anbi2d 687 . . . . . . . . . . . . . . . . . . 19  |-  ( g  =  { ( f `
 z ) ,  z }  ->  (
( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } )  <->  ( u  =/=  (/)  /\  { ( f `  z ) ,  z }  =  { ( f `  u ) ,  u } ) ) )
2019rexbidv 2539 . . . . . . . . . . . . . . . . . 18  |-  ( g  =  { ( f `
 z ) ,  z }  ->  ( E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } )  <->  E. u  e.  x  ( u  =/=  (/)  /\  { ( f `  z ) ,  z }  =  { ( f `  u ) ,  u } ) ) )
2117, 20elab 2889 . . . . . . . . . . . . . . . . 17  |-  ( { ( f `  z
) ,  z }  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  <->  E. u  e.  x  ( u  =/=  (/)  /\  { ( f `  z ) ,  z }  =  { ( f `  u ) ,  u } ) )
2216, 21sylibr 205 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  x  /\  z  =/=  (/) )  ->  { ( f `  z ) ,  z }  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) } )
23 vex 2766 . . . . . . . . . . . . . . . . . 18  |-  z  e. 
_V
2423prid2 3709 . . . . . . . . . . . . . . . . 17  |-  z  e. 
{ ( f `  z ) ,  z }
25 fvex 5472 . . . . . . . . . . . . . . . . . 18  |-  ( f `
 z )  e. 
_V
2625prid1 3708 . . . . . . . . . . . . . . . . 17  |-  ( f `
 z )  e. 
{ ( f `  z ) ,  z }
2724, 26pm3.2i 443 . . . . . . . . . . . . . . . 16  |-  ( z  e.  { ( f `
 z ) ,  z }  /\  (
f `  z )  e.  { ( f `  z ) ,  z } )
28 eleq2 2319 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  { ( f `
 z ) ,  z }  ->  (
z  e.  v  <->  z  e.  { ( f `  z
) ,  z } ) )
29 eleq2 2319 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  { ( f `
 z ) ,  z }  ->  (
( f `  z
)  e.  v  <->  ( f `  z )  e.  {
( f `  z
) ,  z } ) )
3028, 29anbi12d 694 . . . . . . . . . . . . . . . . 17  |-  ( v  =  { ( f `
 z ) ,  z }  ->  (
( z  e.  v  /\  ( f `  z )  e.  v )  <->  ( z  e. 
{ ( f `  z ) ,  z }  /\  ( f `
 z )  e. 
{ ( f `  z ) ,  z } ) ) )
3130rcla4ev 2859 . . . . . . . . . . . . . . . 16  |-  ( ( { ( f `  z ) ,  z }  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  /\  (
z  e.  { ( f `  z ) ,  z }  /\  ( f `  z
)  e.  { ( f `  z ) ,  z } ) )  ->  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  ( f `  z
)  e.  v ) )
3222, 27, 31sylancl 646 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  x  /\  z  =/=  (/) )  ->  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  ( f `  z
)  e.  v ) )
33 eleq1 2318 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( f `  z )  ->  (
w  e.  z  <->  ( f `  z )  e.  z ) )
34 eleq1 2318 . . . . . . . . . . . . . . . . . . 19  |-  ( w  =  ( f `  z )  ->  (
w  e.  v  <->  ( f `  z )  e.  v ) )
3534anbi2d 687 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  ( f `  z )  ->  (
( z  e.  v  /\  w  e.  v )  <->  ( z  e.  v  /\  ( f `
 z )  e.  v ) ) )
3635rexbidv 2539 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( f `  z )  ->  ( E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  ( z  e.  v  /\  w  e.  v )  <->  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  ( f `  z
)  e.  v ) ) )
3733, 36anbi12d 694 . . . . . . . . . . . . . . . 16  |-  ( w  =  ( f `  z )  ->  (
( w  e.  z  /\  E. v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  <->  ( ( f `
 z )  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  ( f `  z
)  e.  v ) ) ) )
3825, 37cla4ev 2850 . . . . . . . . . . . . . . 15  |-  ( ( ( f `  z
)  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  ( z  e.  v  /\  (
f `  z )  e.  v ) )  ->  E. w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
3932, 38sylan2 462 . . . . . . . . . . . . . 14  |-  ( ( ( f `  z
)  e.  z  /\  ( z  e.  x  /\  z  =/=  (/) ) )  ->  E. w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
4039ex 425 . . . . . . . . . . . . 13  |-  ( ( f `  z )  e.  z  ->  (
( z  e.  x  /\  z  =/=  (/) )  ->  E. w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) )
413, 40syl8 67 . . . . . . . . . . . 12  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
z  e.  x  -> 
( z  =/=  (/)  ->  (
( z  e.  x  /\  z  =/=  (/) )  ->  E. w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) ) ) )
4241imp3a 422 . . . . . . . . . . 11  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
( z  e.  x  /\  z  =/=  (/) )  -> 
( ( z  e.  x  /\  z  =/=  (/) )  ->  E. w
( w  e.  z  /\  E. v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) ) )
4342pm2.43d 46 . . . . . . . . . 10  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
( z  e.  x  /\  z  =/=  (/) )  ->  E. w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) )
44 df-rex 2524 . . . . . . . . . . . . . 14  |-  ( E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  ( z  e.  v  /\  w  e.  v )  <->  E. v
( v  e.  {
g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  /\  ( z  e.  v  /\  w  e.  v ) ) )
45 vex 2766 . . . . . . . . . . . . . . . . . . . 20  |-  v  e. 
_V
46 eqeq1 2264 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( g  =  v  ->  (
g  =  { ( f `  u ) ,  u }  <->  v  =  { ( f `  u ) ,  u } ) )
4746anbi2d 687 . . . . . . . . . . . . . . . . . . . . 21  |-  ( g  =  v  ->  (
( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } )  <->  ( u  =/=  (/)  /\  v  =  { ( f `  u ) ,  u } ) ) )
4847rexbidv 2539 . . . . . . . . . . . . . . . . . . . 20  |-  ( g  =  v  ->  ( E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } )  <->  E. u  e.  x  ( u  =/=  (/)  /\  v  =  { ( f `  u ) ,  u } ) ) )
4945, 48elab 2889 . . . . . . . . . . . . . . . . . . 19  |-  ( v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  <->  E. u  e.  x  ( u  =/=  (/)  /\  v  =  { ( f `  u ) ,  u } ) )
50 neeq1 2429 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( z  =  u  ->  (
z  =/=  (/)  <->  u  =/=  (/) ) )
51 fveq2 5458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( z  =  u  ->  (
f `  z )  =  ( f `  u ) )
5251eleq1d 2324 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( z  =  u  ->  (
( f `  z
)  e.  z  <->  ( f `  u )  e.  z ) )
53 eleq2 2319 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( z  =  u  ->  (
( f `  u
)  e.  z  <->  ( f `  u )  e.  u
) )
5452, 53bitrd 246 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( z  =  u  ->  (
( f `  z
)  e.  z  <->  ( f `  u )  e.  u
) )
5550, 54imbi12d 313 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( z  =  u  ->  (
( z  =/=  (/)  ->  (
f `  z )  e.  z )  <->  ( u  =/=  (/)  ->  ( f `  u )  e.  u
) ) )
5655rcla4cv 2856 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
u  e.  x  -> 
( u  =/=  (/)  ->  (
f `  u )  e.  u ) ) )
57 elirrv 7279 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  -.  w  e.  w
58 eleq2 2319 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( w  =  z  ->  (
w  e.  w  <->  w  e.  z ) )
5957, 58mtbii 295 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( w  =  z  ->  -.  w  e.  z )
6059con2i 114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( w  e.  z  ->  -.  w  =  z )
61 vex 2766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  w  e. 
_V
62 fvex 5472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( f `
 u )  e. 
_V
63 vex 2766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  u  e. 
_V
6461, 23, 62, 63prel12 3763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( -.  w  =  z  -> 
( { w ,  z }  =  {
( f `  u
) ,  u }  <->  ( w  e.  { ( f `  u ) ,  u }  /\  z  e.  { (
f `  u ) ,  u } ) ) )
65 ancom 439 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( w  e.  v  /\  z  e.  v )  <->  ( z  e.  v  /\  w  e.  v )
)
66 eleq2 2319 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
w  e.  v  <->  w  e.  { ( f `  u
) ,  u }
) )
67 eleq2 2319 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
z  e.  v  <->  z  e.  { ( f `  u
) ,  u }
) )
6866, 67anbi12d 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
( w  e.  v  /\  z  e.  v )  <->  ( w  e. 
{ ( f `  u ) ,  u }  /\  z  e.  {
( f `  u
) ,  u }
) ) )
6965, 68syl5rbbr 253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
( w  e.  {
( f `  u
) ,  u }  /\  z  e.  { ( f `  u ) ,  u } )  <-> 
( z  e.  v  /\  w  e.  v ) ) )
7064, 69sylan9bbr 684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( v  =  { ( f `  u ) ,  u }  /\  -.  w  =  z
)  ->  ( {
w ,  z }  =  { ( f `
 u ) ,  u }  <->  ( z  e.  v  /\  w  e.  v ) ) )
7160, 70sylan2 462 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( v  =  { ( f `  u ) ,  u }  /\  w  e.  z )  ->  ( { w ,  z }  =  {
( f `  u
) ,  u }  <->  ( z  e.  v  /\  w  e.  v )
) )
7271adantrr 700 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( v  =  { ( f `  u ) ,  u }  /\  ( w  e.  z  /\  ( f `  u
)  e.  u ) )  ->  ( {
w ,  z }  =  { ( f `
 u ) ,  u }  <->  ( z  e.  v  /\  w  e.  v ) ) )
7372pm5.32da 625 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
( ( w  e.  z  /\  ( f `
 u )  e.  u )  /\  {
w ,  z }  =  { ( f `
 u ) ,  u } )  <->  ( (
w  e.  z  /\  ( f `  u
)  e.  u )  /\  ( z  e.  v  /\  w  e.  v ) ) ) )
7461, 23, 62, 63preleq 7286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( w  e.  z  /\  ( f `  u )  e.  u
)  /\  { w ,  z }  =  { ( f `  u ) ,  u } )  ->  (
w  =  ( f `
 u )  /\  z  =  u )
)
7573, 74syl6bir 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
( ( w  e.  z  /\  ( f `
 u )  e.  u )  /\  (
z  e.  v  /\  w  e.  v )
)  ->  ( w  =  ( f `  u )  /\  z  =  u ) ) )
7651eqeq2d 2269 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( z  =  u  ->  (
w  =  ( f `
 z )  <->  w  =  ( f `  u
) ) )
7776biimparc 475 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( w  =  ( f `
 u )  /\  z  =  u )  ->  w  =  ( f `
 z ) )
7875, 77syl6 31 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
( ( w  e.  z  /\  ( f `
 u )  e.  u )  /\  (
z  e.  v  /\  w  e.  v )
)  ->  w  =  ( f `  z
) ) )
7978exp4c 594 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( v  =  { ( f `
 u ) ,  u }  ->  (
w  e.  z  -> 
( ( f `  u )  e.  u  ->  ( ( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z ) ) ) ) )
8079com13 76 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f `  u )  e.  u  ->  (
w  e.  z  -> 
( v  =  {
( f `  u
) ,  u }  ->  ( ( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z ) ) ) ) )
8156, 80syl8 67 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
u  e.  x  -> 
( u  =/=  (/)  ->  (
w  e.  z  -> 
( v  =  {
( f `  u
) ,  u }  ->  ( ( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z ) ) ) ) ) ) )
8281com4r 82 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  e.  z  ->  ( A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
u  e.  x  -> 
( u  =/=  (/)  ->  (
v  =  { ( f `  u ) ,  u }  ->  ( ( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z
) ) ) ) ) ) )
8382imp 420 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( w  e.  z  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  -> 
( u  e.  x  ->  ( u  =/=  (/)  ->  (
v  =  { ( f `  u ) ,  u }  ->  ( ( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z
) ) ) ) ) )
8483imp4a 575 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( w  e.  z  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  -> 
( u  e.  x  ->  ( ( u  =/=  (/)  /\  v  =  {
( f `  u
) ,  u }
)  ->  ( (
z  e.  v  /\  w  e.  v )  ->  w  =  ( f `
 z ) ) ) ) )
8584com3l 77 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  e.  x  ->  (
( u  =/=  (/)  /\  v  =  { ( f `  u ) ,  u } )  ->  (
( w  e.  z  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )  ->  (
( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z
) ) ) ) )
8685rexlimiv 2636 . . . . . . . . . . . . . . . . . . 19  |-  ( E. u  e.  x  ( u  =/=  (/)  /\  v  =  { ( f `  u ) ,  u } )  ->  (
( w  e.  z  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )  ->  (
( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z
) ) ) )
8749, 86sylbi 189 . . . . . . . . . . . . . . . . . 18  |-  ( v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  ->  ( ( w  e.  z  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )  ->  (
( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z
) ) ) )
8887exp3a 427 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  ->  ( w  e.  z  -> 
( A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  ( (
z  e.  v  /\  w  e.  v )  ->  w  =  ( f `
 z ) ) ) ) )
8988com13 76 . . . . . . . . . . . . . . . 16  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
w  e.  z  -> 
( v  e.  {
g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  ->  ( ( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z
) ) ) ) )
9089imp4b 576 . . . . . . . . . . . . . . 15  |-  ( ( A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )  /\  w  e.  z )  ->  (
( v  e.  {
g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  /\  ( z  e.  v  /\  w  e.  v ) )  ->  w  =  ( f `  z ) ) )
9190exlimdv 1933 . . . . . . . . . . . . . 14  |-  ( ( A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )  /\  w  e.  z )  ->  ( E. v ( v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  /\  ( z  e.  v  /\  w  e.  v ) )  ->  w  =  ( f `  z ) ) )
9244, 91syl5bi 210 . . . . . . . . . . . . 13  |-  ( ( A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )  /\  w  e.  z )  ->  ( E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  ( z  e.  v  /\  w  e.  v )  ->  w  =  ( f `  z ) ) )
9392expimpd 589 . . . . . . . . . . . 12  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
( w  e.  z  /\  E. v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  ->  w  =  ( f `  z
) ) )
9493alrimiv 2013 . . . . . . . . . . 11  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  A. w
( ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  ->  w  =  ( f `  z
) ) )
95 mo2icl 2919 . . . . . . . . . . 11  |-  ( A. w ( ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  ->  w  =  ( f `  z
) )  ->  E* w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
9694, 95syl 17 . . . . . . . . . 10  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  E* w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
9743, 96jctird 530 . . . . . . . . 9  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
( z  e.  x  /\  z  =/=  (/) )  -> 
( E. w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  ( z  e.  v  /\  w  e.  v ) )  /\  E* w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) ) )
98 df-reu 2525 . . . . . . . . . 10  |-  ( E! w  e.  z  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )  <->  E! w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
99 eu5 2156 . . . . . . . . . 10  |-  ( E! w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  <->  ( E. w
( w  e.  z  /\  E. v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  /\  E* w
( w  e.  z  /\  E. v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) )
10098, 99bitri 242 . . . . . . . . 9  |-  ( E! w  e.  z  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )  <->  ( E. w ( w  e.  z  /\  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  /\  E* w
( w  e.  z  /\  E. v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) )
10197, 100syl6ibr 220 . . . . . . . 8  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
( z  e.  x  /\  z  =/=  (/) )  ->  E! w  e.  z  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  ( z  e.  v  /\  w  e.  v ) ) )
102101exp3a 427 . . . . . . 7  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
z  e.  x  -> 
( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) )
1032, 102ralrimi 2599 . . . . . 6  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  { g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
104 vex 2766 . . . . . . . . . . . 12  |-  f  e. 
_V
105104rnex 4930 . . . . . . . . . . 11  |-  ran  f  e.  _V
106 p0ex 4169 . . . . . . . . . . 11  |-  { (/) }  e.  _V
107105, 106unex 4490 . . . . . . . . . 10  |-  ( ran  f  u.  { (/) } )  e.  _V
108 vex 2766 . . . . . . . . . 10  |-  x  e. 
_V
109107, 108unex 4490 . . . . . . . . 9  |-  ( ( ran  f  u.  { (/)
} )  u.  x
)  e.  _V
110109pwex 4165 . . . . . . . 8  |-  ~P (
( ran  f  u.  {
(/) } )  u.  x
)  e.  _V
111 ssun1 3313 . . . . . . . . . . . . . . 15  |-  ( ran  f  u.  { (/) } )  C_  ( ( ran  f  u.  { (/) } )  u.  x )
112 fvrn0 5484 . . . . . . . . . . . . . . 15  |-  ( f `
 u )  e.  ( ran  f  u. 
{ (/) } )
113111, 112sselii 3152 . . . . . . . . . . . . . 14  |-  ( f `
 u )  e.  ( ( ran  f  u.  { (/) } )  u.  x )
114 elun2 3318 . . . . . . . . . . . . . 14  |-  ( u  e.  x  ->  u  e.  ( ( ran  f  u.  { (/) } )  u.  x ) )
115 prssi 3745 . . . . . . . . . . . . . 14  |-  ( ( ( f `  u
)  e.  ( ( ran  f  u.  { (/)
} )  u.  x
)  /\  u  e.  ( ( ran  f  u.  { (/) } )  u.  x ) )  ->  { ( f `  u ) ,  u }  C_  ( ( ran  f  u.  { (/) } )  u.  x ) )
116113, 114, 115sylancr 647 . . . . . . . . . . . . 13  |-  ( u  e.  x  ->  { ( f `  u ) ,  u }  C_  ( ( ran  f  u.  { (/) } )  u.  x ) )
117 prex 4189 . . . . . . . . . . . . . 14  |-  { ( f `  u ) ,  u }  e.  _V
118117elpw 3605 . . . . . . . . . . . . 13  |-  ( { ( f `  u
) ,  u }  e.  ~P ( ( ran  f  u.  { (/) } )  u.  x )  <->  { ( f `  u ) ,  u }  C_  ( ( ran  f  u.  { (/) } )  u.  x ) )
119116, 118sylibr 205 . . . . . . . . . . . 12  |-  ( u  e.  x  ->  { ( f `  u ) ,  u }  e.  ~P ( ( ran  f  u.  { (/) } )  u.  x ) )
120 eleq1 2318 . . . . . . . . . . . 12  |-  ( g  =  { ( f `
 u ) ,  u }  ->  (
g  e.  ~P (
( ran  f  u.  {
(/) } )  u.  x
)  <->  { ( f `  u ) ,  u }  e.  ~P (
( ran  f  u.  {
(/) } )  u.  x
) ) )
121119, 120syl5ibrcom 215 . . . . . . . . . . 11  |-  ( u  e.  x  ->  (
g  =  { ( f `  u ) ,  u }  ->  g  e.  ~P ( ( ran  f  u.  { (/)
} )  u.  x
) ) )
122121adantld 455 . . . . . . . . . 10  |-  ( u  e.  x  ->  (
( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } )  ->  g  e.  ~P ( ( ran  f  u.  { (/) } )  u.  x ) ) )
123122rexlimiv 2636 . . . . . . . . 9  |-  ( E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } )  ->  g  e.  ~P ( ( ran  f  u.  { (/) } )  u.  x ) )
124123abssi 3223 . . . . . . . 8  |-  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  C_  ~P ( ( ran  f  u.  { (/) } )  u.  x )
125110, 124ssexi 4133 . . . . . . 7  |-  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  {
( f `  u
) ,  u }
) }  e.  _V
126 rexeq 2712 . . . . . . . . . 10  |-  ( y  =  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  ->  ( E. v  e.  y  ( z  e.  v  /\  w  e.  v )  <->  E. v  e.  {
g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
127126reubidv 2699 . . . . . . . . 9  |-  ( y  =  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  ->  ( E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v )  <->  E! w  e.  z  E. v  e.  {
g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) )
128127imbi2d 309 . . . . . . . 8  |-  ( y  =  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  ->  ( ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
)  <->  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e. 
{ g  |  E. u  e.  x  (
u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) )
129128ralbidv 2538 . . . . . . 7  |-  ( y  =  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  ->  ( A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
)  <->  A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
) ) )
130125, 129cla4ev 2850 . . . . . 6  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  E! w  e.  z  E. v  e.  { g  |  E. u  e.  x  ( u  =/=  (/)  /\  g  =  { ( f `  u ) ,  u } ) }  (
z  e.  v  /\  w  e.  v )
)  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
) )
131103, 130syl 17 . . . . 5  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
) )
132131exlimiv 2024 . . . 4  |-  ( E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
) )
133132alimi 1546 . . 3  |-  ( A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) )
1341, 133sylbi 189 . 2  |-  (CHOICE  ->  A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) )
135 dfac2a 7724 . 2  |-  ( A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  -> CHOICE )
136134, 135impbii 182 1  |-  (CHOICE  <->  A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1532   E.wex 1537    = wceq 1619    e. wcel 1621   E!weu 2118   E*wmo 2119   {cab 2244    =/= wne 2421   A.wral 2518   E.wrex 2519   E!wreu 2520    u. cun 3125    C_ wss 3127   (/)c0 3430   ~Pcpw 3599   {csn 3614   {cpr 3615   ran crn 4662   ` cfv 4673  CHOICEwac 7710
This theorem is referenced by:  dfac7  7726
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-reg 7274
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-br 3998  df-opab 4052  df-mpt 4053  df-eprel 4277  df-id 4281  df-fr 4324  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-fv 4689  df-iota 6225  df-riota 6272  df-ac 7711
  Copyright terms: Public domain W3C validator