MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac2a Structured version   Unicode version

Theorem dfac2a 8000
Description: Our Axiom of Choice (in the form of ac3 8332) implies the Axiom of Choice (first form) of [Enderton] p. 49. The proof uses neither AC nor the Axiom of Regularity. See dfac2 8001 for the converse (which does use the Axiom of Regularity). (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
dfac2a  |-  ( A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  -> CHOICE )
Distinct variable group:    x, z, y, w, v

Proof of Theorem dfac2a
Dummy variables  f  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotauni 6548 . . . . . . . . 9  |-  ( E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )  ->  ( iota_ w  e.  z E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  =  U. { w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) } )
2 riotacl 6556 . . . . . . . . 9  |-  ( E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )  ->  ( iota_ w  e.  z E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  e.  z )
31, 2eqeltrrd 2510 . . . . . . . 8  |-  ( E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )  ->  U. { w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) }  e.  z )
4 elequ2 1730 . . . . . . . . . . . . . 14  |-  ( u  =  z  ->  (
w  e.  u  <->  w  e.  z ) )
5 elequ1 1728 . . . . . . . . . . . . . . . 16  |-  ( u  =  z  ->  (
u  e.  v  <->  z  e.  v ) )
65anbi1d 686 . . . . . . . . . . . . . . 15  |-  ( u  =  z  ->  (
( u  e.  v  /\  w  e.  v )  <->  ( z  e.  v  /\  w  e.  v ) ) )
76rexbidv 2718 . . . . . . . . . . . . . 14  |-  ( u  =  z  ->  ( E. v  e.  y 
( u  e.  v  /\  w  e.  v )  <->  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) )
84, 7anbi12d 692 . . . . . . . . . . . . 13  |-  ( u  =  z  ->  (
( w  e.  u  /\  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) )  <->  ( w  e.  z  /\  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) ) )
98abbidv 2549 . . . . . . . . . . . 12  |-  ( u  =  z  ->  { w  |  ( w  e.  u  /\  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) ) }  =  { w  |  ( w  e.  z  /\  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) } )
10 df-rab 2706 . . . . . . . . . . . 12  |-  { w  e.  u  |  E. v  e.  y  (
u  e.  v  /\  w  e.  v ) }  =  { w  |  ( w  e.  u  /\  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) ) }
11 df-rab 2706 . . . . . . . . . . . 12  |-  { w  e.  z  |  E. v  e.  y  (
z  e.  v  /\  w  e.  v ) }  =  { w  |  ( w  e.  z  /\  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) }
129, 10, 113eqtr4g 2492 . . . . . . . . . . 11  |-  ( u  =  z  ->  { w  e.  u  |  E. v  e.  y  (
u  e.  v  /\  w  e.  v ) }  =  { w  e.  z  |  E. v  e.  y  (
z  e.  v  /\  w  e.  v ) } )
1312unieqd 4018 . . . . . . . . . 10  |-  ( u  =  z  ->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) }  =  U. { w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) } )
14 eqid 2435 . . . . . . . . . 10  |-  ( u  e.  x  |->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  =  ( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )
15 vex 2951 . . . . . . . . . . . 12  |-  z  e. 
_V
1615rabex 4346 . . . . . . . . . . 11  |-  { w  e.  z  |  E. v  e.  y  (
z  e.  v  /\  w  e.  v ) }  e.  _V
1716uniex 4697 . . . . . . . . . 10  |-  U. {
w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) }  e.  _V
1813, 14, 17fvmpt 5798 . . . . . . . . 9  |-  ( z  e.  x  ->  (
( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `
 z )  = 
U. { w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) } )
1918eleq1d 2501 . . . . . . . 8  |-  ( z  e.  x  ->  (
( ( u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `
 z )  e.  z  <->  U. { w  e.  z  |  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) }  e.  z ) )
203, 19syl5ibr 213 . . . . . . 7  |-  ( z  e.  x  ->  ( E! w  e.  z  E. v  e.  y 
( z  e.  v  /\  w  e.  v )  ->  ( (
u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `  z )  e.  z ) )
2120imim2d 50 . . . . . 6  |-  ( z  e.  x  ->  (
( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
)  ->  ( z  =/=  (/)  ->  ( (
u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `  z )  e.  z ) ) )
2221ralimia 2771 . . . . 5  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
)  ->  A. z  e.  x  ( z  =/=  (/)  ->  ( (
u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `  z )  e.  z ) )
23 ssrab2 3420 . . . . . . . . . . 11  |-  { w  e.  u  |  E. v  e.  y  (
u  e.  v  /\  w  e.  v ) }  C_  u
24 elssuni 4035 . . . . . . . . . . 11  |-  ( u  e.  x  ->  u  C_ 
U. x )
2523, 24syl5ss 3351 . . . . . . . . . 10  |-  ( u  e.  x  ->  { w  e.  u  |  E. v  e.  y  (
u  e.  v  /\  w  e.  v ) }  C_  U. x )
2625unissd 4031 . . . . . . . . 9  |-  ( u  e.  x  ->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) }  C_  U. U. x )
27 vex 2951 . . . . . . . . . . . 12  |-  x  e. 
_V
2827uniex 4697 . . . . . . . . . . 11  |-  U. x  e.  _V
2928uniex 4697 . . . . . . . . . 10  |-  U. U. x  e.  _V
3029elpw2 4356 . . . . . . . . 9  |-  ( U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) }  e.  ~P U.
U. x  <->  U. { w  e.  u  |  E. v  e.  y  (
u  e.  v  /\  w  e.  v ) }  C_  U. U. x
)
3126, 30sylibr 204 . . . . . . . 8  |-  ( u  e.  x  ->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) }  e.  ~P U.
U. x )
3214, 31fmpti 5884 . . . . . . 7  |-  ( u  e.  x  |->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) : x --> ~P U. U. x
3329pwex 4374 . . . . . . 7  |-  ~P U. U. x  e.  _V
34 fex2 5595 . . . . . . 7  |-  ( ( ( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) : x --> ~P U. U. x  /\  x  e. 
_V  /\  ~P U. U. x  e.  _V )  ->  ( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  e.  _V )
3532, 27, 33, 34mp3an 1279 . . . . . 6  |-  ( u  e.  x  |->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  e. 
_V
36 fveq1 5719 . . . . . . . . 9  |-  ( f  =  ( u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  ->  ( f `  z )  =  ( ( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `
 z ) )
3736eleq1d 2501 . . . . . . . 8  |-  ( f  =  ( u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  ->  ( ( f `
 z )  e.  z  <->  ( ( u  e.  x  |->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `  z )  e.  z ) )
3837imbi2d 308 . . . . . . 7  |-  ( f  =  ( u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  ->  ( ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  ( z  =/=  (/)  ->  ( ( u  e.  x  |->  U. {
w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `  z )  e.  z ) ) )
3938ralbidv 2717 . . . . . 6  |-  ( f  =  ( u  e.  x  |->  U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } )  ->  ( A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  A. z  e.  x  ( z  =/=  (/)  ->  (
( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `
 z )  e.  z ) ) )
4035, 39spcev 3035 . . . . 5  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
( u  e.  x  |-> 
U. { w  e.  u  |  E. v  e.  y  ( u  e.  v  /\  w  e.  v ) } ) `
 z )  e.  z )  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )
4122, 40syl 16 . . . 4  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
)  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )
4241exlimiv 1644 . . 3  |-  ( E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
4342alimi 1568 . 2  |-  ( A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  ->  A. x E. f A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z ) )
44 dfac3 7992 . 2  |-  (CHOICE  <->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
4543, 44sylibr 204 1  |-  ( A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) )  -> CHOICE )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   A.wal 1549   E.wex 1550    = wceq 1652    e. wcel 1725   {cab 2421    =/= wne 2598   A.wral 2697   E.wrex 2698   E!wreu 2699   {crab 2701   _Vcvv 2948    C_ wss 3312   (/)c0 3620   ~Pcpw 3791   U.cuni 4007    e. cmpt 4258   -->wf 5442   ` cfv 5446   iota_crio 6534  CHOICEwac 7986
This theorem is referenced by:  dfac2  8001  axac2  8336
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-fv 5454  df-riota 6541  df-ac 7987
  Copyright terms: Public domain W3C validator