MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac4 Unicode version

Theorem dfac4 7744
Description: Equivalence of two versions of the Axiom of Choice. The right-hand side is Axiom AC of [BellMachover] p. 488. The proof does not depend on AC. (Contributed by NM, 24-Mar-2004.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
dfac4  |-  (CHOICE  <->  A. x E. f ( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) ) )
Distinct variable group:    x, f, z
Dummy variables  y  w are mutually distinct and distinct from all other variables.

Proof of Theorem dfac4
StepHypRef Expression
1 dfac3 7743 . 2  |-  (CHOICE  <->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
2 fveq1 5484 . . . . . . . . 9  |-  ( f  =  y  ->  (
f `  z )  =  ( y `  z ) )
32eleq1d 2350 . . . . . . . 8  |-  ( f  =  y  ->  (
( f `  z
)  e.  z  <->  ( y `  z )  e.  z ) )
43imbi2d 309 . . . . . . 7  |-  ( f  =  y  ->  (
( z  =/=  (/)  ->  (
f `  z )  e.  z )  <->  ( z  =/=  (/)  ->  ( y `  z )  e.  z ) ) )
54ralbidv 2564 . . . . . 6  |-  ( f  =  y  ->  ( A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )  <->  A. z  e.  x  ( z  =/=  (/)  ->  ( y `  z )  e.  z ) ) )
65cbvexv 1948 . . . . 5  |-  ( E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  E. y A. z  e.  x  ( z  =/=  (/)  ->  ( y `  z )  e.  z ) )
7 fvex 5499 . . . . . . . . 9  |-  ( y `
 w )  e. 
_V
8 eqid 2284 . . . . . . . . 9  |-  ( w  e.  x  |->  ( y `
 w ) )  =  ( w  e.  x  |->  ( y `  w ) )
97, 8fnmpti 5337 . . . . . . . 8  |-  ( w  e.  x  |->  ( y `
 w ) )  Fn  x
10 fveq2 5485 . . . . . . . . . . . . 13  |-  ( w  =  z  ->  (
y `  w )  =  ( y `  z ) )
11 fvex 5499 . . . . . . . . . . . . 13  |-  ( y `
 z )  e. 
_V
1210, 8, 11fvmpt 5563 . . . . . . . . . . . 12  |-  ( z  e.  x  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  =  ( y `
 z ) )
1312eleq1d 2350 . . . . . . . . . . 11  |-  ( z  e.  x  ->  (
( ( w  e.  x  |->  ( y `  w ) ) `  z )  e.  z  <-> 
( y `  z
)  e.  z ) )
1413imbi2d 309 . . . . . . . . . 10  |-  ( z  e.  x  ->  (
( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z )  <-> 
( z  =/=  (/)  ->  (
y `  z )  e.  z ) ) )
1514ralbiia 2576 . . . . . . . . 9  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z )  <->  A. z  e.  x  ( z  =/=  (/)  ->  (
y `  z )  e.  z ) )
1615anbi2i 677 . . . . . . . 8  |-  ( ( ( w  e.  x  |->  ( y `  w
) )  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z ) )  <->  ( ( w  e.  x  |->  ( y `
 w ) )  Fn  x  /\  A. z  e.  x  (
z  =/=  (/)  ->  (
y `  z )  e.  z ) ) )
179, 16mpbiran 886 . . . . . . 7  |-  ( ( ( w  e.  x  |->  ( y `  w
) )  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z ) )  <->  A. z  e.  x  ( z  =/=  (/)  ->  (
y `  z )  e.  z ) )
18 fvrn0 5511 . . . . . . . . . . 11  |-  ( y `
 w )  e.  ( ran  y  u. 
{ (/) } )
1918rgenw 2611 . . . . . . . . . 10  |-  A. w  e.  x  ( y `  w )  e.  ( ran  y  u.  { (/)
} )
208fmpt 5642 . . . . . . . . . 10  |-  ( A. w  e.  x  (
y `  w )  e.  ( ran  y  u. 
{ (/) } )  <->  ( w  e.  x  |->  ( y `
 w ) ) : x --> ( ran  y  u.  { (/) } ) )
2119, 20mpbi 201 . . . . . . . . 9  |-  ( w  e.  x  |->  ( y `
 w ) ) : x --> ( ran  y  u.  { (/) } )
22 vex 2792 . . . . . . . . 9  |-  x  e. 
_V
23 vex 2792 . . . . . . . . . . 11  |-  y  e. 
_V
2423rnex 4941 . . . . . . . . . 10  |-  ran  y  e.  _V
25 p0ex 4196 . . . . . . . . . 10  |-  { (/) }  e.  _V
2624, 25unex 4517 . . . . . . . . 9  |-  ( ran  y  u.  { (/) } )  e.  _V
27 fex2 5366 . . . . . . . . 9  |-  ( ( ( w  e.  x  |->  ( y `  w
) ) : x --> ( ran  y  u. 
{ (/) } )  /\  x  e.  _V  /\  ( ran  y  u.  { (/) } )  e.  _V )  ->  ( w  e.  x  |->  ( y `  w
) )  e.  _V )
2821, 22, 26, 27mp3an 1279 . . . . . . . 8  |-  ( w  e.  x  |->  ( y `
 w ) )  e.  _V
29 fneq1 5298 . . . . . . . . 9  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( f  Fn  x  <->  ( w  e.  x  |->  ( y `  w ) )  Fn  x ) )
30 fveq1 5484 . . . . . . . . . . . 12  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( f `  z
)  =  ( ( w  e.  x  |->  ( y `  w ) ) `  z ) )
3130eleq1d 2350 . . . . . . . . . . 11  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( ( f `  z )  e.  z  <-> 
( ( w  e.  x  |->  ( y `  w ) ) `  z )  e.  z ) )
3231imbi2d 309 . . . . . . . . . 10  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  ( z  =/=  (/)  ->  ( ( w  e.  x  |->  ( y `
 w ) ) `
 z )  e.  z ) ) )
3332ralbidv 2564 . . . . . . . . 9  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  A. z  e.  x  ( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z ) ) )
3429, 33anbi12d 693 . . . . . . . 8  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( ( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )  <->  ( (
w  e.  x  |->  ( y `  w ) )  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z ) ) ) )
3528, 34spcev 2876 . . . . . . 7  |-  ( ( ( w  e.  x  |->  ( y `  w
) )  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z ) )  ->  E. f
( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
3617, 35sylbir 206 . . . . . 6  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
y `  z )  e.  z )  ->  E. f
( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
3736exlimiv 1667 . . . . 5  |-  ( E. y A. z  e.  x  ( z  =/=  (/)  ->  ( y `  z )  e.  z )  ->  E. f
( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
386, 37sylbi 189 . . . 4  |-  ( E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  E. f
( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
39 simpr 449 . . . . 5  |-  ( ( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  ->  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )
4039eximi 1564 . . . 4  |-  ( E. f ( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )
4138, 40impbii 182 . . 3  |-  ( E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  E. f ( f  Fn  x  /\  A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
4241albii 1554 . 2  |-  ( A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  A. x E. f
( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
431, 42bitri 242 1  |-  (CHOICE  <->  A. x E. f ( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1528   E.wex 1529    = wceq 1624    e. wcel 1685    =/= wne 2447   A.wral 2544   _Vcvv 2789    u. cun 3151   (/)c0 3456   {csn 3641    e. cmpt 4078   ran crn 4689    Fn wfn 5216   -->wf 5217   ` cfv 5221  CHOICEwac 7737
This theorem is referenced by:  dfac5  7750  dfacacn  7762  ac5  8099
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-fv 5229  df-ac 7738
  Copyright terms: Public domain W3C validator