MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac4 Unicode version

Theorem dfac4 7992
Description: Equivalence of two versions of the Axiom of Choice. The right-hand side is Axiom AC of [BellMachover] p. 488. The proof does not depend on AC. (Contributed by NM, 24-Mar-2004.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
dfac4  |-  (CHOICE  <->  A. x E. f ( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) ) )
Distinct variable group:    x, f, z

Proof of Theorem dfac4
Dummy variables  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac3 7991 . 2  |-  (CHOICE  <->  A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
2 fveq1 5718 . . . . . . . . 9  |-  ( f  =  y  ->  (
f `  z )  =  ( y `  z ) )
32eleq1d 2501 . . . . . . . 8  |-  ( f  =  y  ->  (
( f `  z
)  e.  z  <->  ( y `  z )  e.  z ) )
43imbi2d 308 . . . . . . 7  |-  ( f  =  y  ->  (
( z  =/=  (/)  ->  (
f `  z )  e.  z )  <->  ( z  =/=  (/)  ->  ( y `  z )  e.  z ) ) )
54ralbidv 2717 . . . . . 6  |-  ( f  =  y  ->  ( A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )  <->  A. z  e.  x  ( z  =/=  (/)  ->  ( y `  z )  e.  z ) ) )
65cbvexv 1985 . . . . 5  |-  ( E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  E. y A. z  e.  x  ( z  =/=  (/)  ->  ( y `  z )  e.  z ) )
7 fvex 5733 . . . . . . . . 9  |-  ( y `
 w )  e. 
_V
8 eqid 2435 . . . . . . . . 9  |-  ( w  e.  x  |->  ( y `
 w ) )  =  ( w  e.  x  |->  ( y `  w ) )
97, 8fnmpti 5564 . . . . . . . 8  |-  ( w  e.  x  |->  ( y `
 w ) )  Fn  x
10 fveq2 5719 . . . . . . . . . . . . 13  |-  ( w  =  z  ->  (
y `  w )  =  ( y `  z ) )
11 fvex 5733 . . . . . . . . . . . . 13  |-  ( y `
 z )  e. 
_V
1210, 8, 11fvmpt 5797 . . . . . . . . . . . 12  |-  ( z  e.  x  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  =  ( y `
 z ) )
1312eleq1d 2501 . . . . . . . . . . 11  |-  ( z  e.  x  ->  (
( ( w  e.  x  |->  ( y `  w ) ) `  z )  e.  z  <-> 
( y `  z
)  e.  z ) )
1413imbi2d 308 . . . . . . . . . 10  |-  ( z  e.  x  ->  (
( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z )  <-> 
( z  =/=  (/)  ->  (
y `  z )  e.  z ) ) )
1514ralbiia 2729 . . . . . . . . 9  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z )  <->  A. z  e.  x  ( z  =/=  (/)  ->  (
y `  z )  e.  z ) )
1615anbi2i 676 . . . . . . . 8  |-  ( ( ( w  e.  x  |->  ( y `  w
) )  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z ) )  <->  ( ( w  e.  x  |->  ( y `
 w ) )  Fn  x  /\  A. z  e.  x  (
z  =/=  (/)  ->  (
y `  z )  e.  z ) ) )
179, 16mpbiran 885 . . . . . . 7  |-  ( ( ( w  e.  x  |->  ( y `  w
) )  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z ) )  <->  A. z  e.  x  ( z  =/=  (/)  ->  (
y `  z )  e.  z ) )
18 fvrn0 5744 . . . . . . . . . . 11  |-  ( y `
 w )  e.  ( ran  y  u. 
{ (/) } )
1918rgenw 2765 . . . . . . . . . 10  |-  A. w  e.  x  ( y `  w )  e.  ( ran  y  u.  { (/)
} )
208fmpt 5881 . . . . . . . . . 10  |-  ( A. w  e.  x  (
y `  w )  e.  ( ran  y  u. 
{ (/) } )  <->  ( w  e.  x  |->  ( y `
 w ) ) : x --> ( ran  y  u.  { (/) } ) )
2119, 20mpbi 200 . . . . . . . . 9  |-  ( w  e.  x  |->  ( y `
 w ) ) : x --> ( ran  y  u.  { (/) } )
22 vex 2951 . . . . . . . . 9  |-  x  e. 
_V
23 vex 2951 . . . . . . . . . . 11  |-  y  e. 
_V
2423rnex 5124 . . . . . . . . . 10  |-  ran  y  e.  _V
25 p0ex 4378 . . . . . . . . . 10  |-  { (/) }  e.  _V
2624, 25unex 4698 . . . . . . . . 9  |-  ( ran  y  u.  { (/) } )  e.  _V
27 fex2 5594 . . . . . . . . 9  |-  ( ( ( w  e.  x  |->  ( y `  w
) ) : x --> ( ran  y  u. 
{ (/) } )  /\  x  e.  _V  /\  ( ran  y  u.  { (/) } )  e.  _V )  ->  ( w  e.  x  |->  ( y `  w
) )  e.  _V )
2821, 22, 26, 27mp3an 1279 . . . . . . . 8  |-  ( w  e.  x  |->  ( y `
 w ) )  e.  _V
29 fneq1 5525 . . . . . . . . 9  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( f  Fn  x  <->  ( w  e.  x  |->  ( y `  w ) )  Fn  x ) )
30 fveq1 5718 . . . . . . . . . . . 12  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( f `  z
)  =  ( ( w  e.  x  |->  ( y `  w ) ) `  z ) )
3130eleq1d 2501 . . . . . . . . . . 11  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( ( f `  z )  e.  z  <-> 
( ( w  e.  x  |->  ( y `  w ) ) `  z )  e.  z ) )
3231imbi2d 308 . . . . . . . . . 10  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  ( z  =/=  (/)  ->  ( ( w  e.  x  |->  ( y `
 w ) ) `
 z )  e.  z ) ) )
3332ralbidv 2717 . . . . . . . . 9  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  A. z  e.  x  ( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z ) ) )
3429, 33anbi12d 692 . . . . . . . 8  |-  ( f  =  ( w  e.  x  |->  ( y `  w ) )  -> 
( ( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )  <->  ( (
w  e.  x  |->  ( y `  w ) )  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z ) ) ) )
3528, 34spcev 3035 . . . . . . 7  |-  ( ( ( w  e.  x  |->  ( y `  w
) )  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
( w  e.  x  |->  ( y `  w
) ) `  z
)  e.  z ) )  ->  E. f
( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
3617, 35sylbir 205 . . . . . 6  |-  ( A. z  e.  x  (
z  =/=  (/)  ->  (
y `  z )  e.  z )  ->  E. f
( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
3736exlimiv 1644 . . . . 5  |-  ( E. y A. z  e.  x  ( z  =/=  (/)  ->  ( y `  z )  e.  z )  ->  E. f
( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
386, 37sylbi 188 . . . 4  |-  ( E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  E. f
( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
39 simpr 448 . . . . 5  |-  ( ( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  ->  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )
4039eximi 1585 . . . 4  |-  ( E. f ( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )
4138, 40impbii 181 . . 3  |-  ( E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  E. f ( f  Fn  x  /\  A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
4241albii 1575 . 2  |-  ( A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  A. x E. f
( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) ) )
431, 42bitri 241 1  |-  (CHOICE  <->  A. x E. f ( f  Fn  x  /\  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1549   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   _Vcvv 2948    u. cun 3310   (/)c0 3620   {csn 3806    e. cmpt 4258   ran crn 4870    Fn wfn 5440   -->wf 5441   ` cfv 5445  CHOICEwac 7985
This theorem is referenced by:  dfac5  7998  dfacacn  8010  ac5  8346
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-fv 5453  df-ac 7986
  Copyright terms: Public domain W3C validator