MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac7 Unicode version

Theorem dfac7 7726
Description: Equivalence of the Axiom of Choice (first form) of [Enderton] p. 49 and our Axiom of Choice (in the form of ac2 8055). The proof does not depend AC on but does depend on the Axiom of Regularity. (Contributed by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
dfac7  |-  (CHOICE  <->  A. x E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) )
Distinct variable group:    x, z, y, w, v, u

Proof of Theorem dfac7
StepHypRef Expression
1 dfac2 7725 . 2  |-  (CHOICE  <->  A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) )
2 aceq2 7714 . . 3  |-  ( E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )  <->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
) )
32albii 1554 . 2  |-  ( A. x E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )  <->  A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) )
41, 3bitr4i 245 1  |-  (CHOICE  <->  A. x E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1532   E.wex 1537    e. wcel 1621    =/= wne 2421   A.wral 2518   E.wrex 2519   E!wreu 2520   (/)c0 3430  CHOICEwac 7710
This theorem is referenced by:  dfac0  7727  dfac1  7728
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-reg 7274
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-br 3998  df-opab 4052  df-mpt 4053  df-eprel 4277  df-id 4281  df-fr 4324  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-fv 4689  df-iota 6225  df-riota 6272  df-ac 7711
  Copyright terms: Public domain W3C validator