MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac7 Unicode version

Theorem dfac7 7753
Description: Equivalence of the Axiom of Choice (first form) of [Enderton] p. 49 and our Axiom of Choice (in the form of ac2 8082). The proof does not depend AC on but does depend on the Axiom of Regularity. (Contributed by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
dfac7  |-  (CHOICE  <->  A. x E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) )
Distinct variable group:    x, z, y, w, v, u

Proof of Theorem dfac7
StepHypRef Expression
1 dfac2 7752 . 2  |-  (CHOICE  <->  A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) )
2 aceq2 7741 . . 3  |-  ( E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )  <->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
) )
32albii 1554 . 2  |-  ( A. x E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )  <->  A. x E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  ( z  e.  v  /\  w  e.  v ) ) )
41, 3bitr4i 245 1  |-  (CHOICE  <->  A. x E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1528   E.wex 1529    e. wcel 1685    =/= wne 2447   A.wral 2544   E.wrex 2545   E!wreu 2546   (/)c0 3456  CHOICEwac 7737
This theorem is referenced by:  dfac0  7754  dfac1  7755
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-reg 7301
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-eprel 4304  df-id 4308  df-fr 4351  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-fv 5229  df-iota 6252  df-riota 6299  df-ac 7738
  Copyright terms: Public domain W3C validator