MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac8a Unicode version

Theorem dfac8a 7625
Description: Numeration theorem: every set with a choice function on its power set is numerable. With AC, this reduces to the statement that every set is numerable. Similar to Theorem 10.3 of [TakeutiZaring] p. 84. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
dfac8a  |-  ( A  e.  B  ->  ( E. h A. y  e. 
~P  A ( y  =/=  (/)  ->  ( h `  y )  e.  y )  ->  A  e.  dom  card ) )
Distinct variable groups:    y, h, A    B, h
Allowed substitution hint:    B( y)

Proof of Theorem dfac8a
StepHypRef Expression
1 eqid 2258 . 2  |- recs ( ( v  e.  _V  |->  ( h `  ( A 
\  ran  v )
) ) )  = recs ( ( v  e. 
_V  |->  ( h `  ( A  \  ran  v
) ) ) )
2 rneq 4892 . . . . 5  |-  ( v  =  f  ->  ran  v  =  ran  f )
32difeq2d 3269 . . . 4  |-  ( v  =  f  ->  ( A  \  ran  v )  =  ( A  \  ran  f ) )
43fveq2d 5462 . . 3  |-  ( v  =  f  ->  (
h `  ( A  \  ran  v ) )  =  ( h `  ( A  \  ran  f
) ) )
54cbvmptv 4085 . 2  |-  ( v  e.  _V  |->  ( h `
 ( A  \  ran  v ) ) )  =  ( f  e. 
_V  |->  ( h `  ( A  \  ran  f
) ) )
61, 5dfac8alem 7624 1  |-  ( A  e.  B  ->  ( E. h A. y  e. 
~P  A ( y  =/=  (/)  ->  ( h `  y )  e.  y )  ->  A  e.  dom  card ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6   E.wex 1537    = wceq 1619    e. wcel 1621    =/= wne 2421   A.wral 2518   _Vcvv 2763    \ cdif 3124   (/)c0 3430   ~Pcpw 3599    e. cmpt 4051   dom cdm 4661   ran crn 4662   ` cfv 4673  recscrecs 6355   cardccrd 7536
This theorem is referenced by:  ween  7630  acnnum  7647  dfac8  7729
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-suc 4370  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-recs 6356  df-en 6832  df-card 7540
  Copyright terms: Public domain W3C validator