Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac8a Unicode version

Theorem dfac8a 7871
 Description: Numeration theorem: every set with a choice function on its power set is numerable. With AC, this reduces to the statement that every set is numerable. Similar to Theorem 10.3 of [TakeutiZaring] p. 84. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
dfac8a
Distinct variable groups:   ,,   ,
Allowed substitution hint:   ()

Proof of Theorem dfac8a
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2408 . 2 recs recs
2 rneq 5058 . . . . 5
32difeq2d 3429 . . . 4
43fveq2d 5695 . . 3
54cbvmptv 4264 . 2
61, 5dfac8alem 7870 1
 Colors of variables: wff set class Syntax hints:   wi 4  wex 1547   wcel 1721   wne 2571  wral 2670  cvv 2920   cdif 3281  c0 3592  cpw 3763   cmpt 4230   cdm 4841   crn 4842  cfv 5417  recscrecs 6595  ccrd 7782 This theorem is referenced by:  ween  7876  acnnum  7893  dfac8  7975 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-suc 4551  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-recs 6596  df-en 7073  df-card 7786
 Copyright terms: Public domain W3C validator