MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac8a Unicode version

Theorem dfac8a 7871
Description: Numeration theorem: every set with a choice function on its power set is numerable. With AC, this reduces to the statement that every set is numerable. Similar to Theorem 10.3 of [TakeutiZaring] p. 84. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
dfac8a  |-  ( A  e.  B  ->  ( E. h A. y  e. 
~P  A ( y  =/=  (/)  ->  ( h `  y )  e.  y )  ->  A  e.  dom  card ) )
Distinct variable groups:    y, h, A    B, h
Allowed substitution hint:    B( y)

Proof of Theorem dfac8a
Dummy variables  f 
v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2408 . 2  |- recs ( ( v  e.  _V  |->  ( h `  ( A 
\  ran  v )
) ) )  = recs ( ( v  e. 
_V  |->  ( h `  ( A  \  ran  v
) ) ) )
2 rneq 5058 . . . . 5  |-  ( v  =  f  ->  ran  v  =  ran  f )
32difeq2d 3429 . . . 4  |-  ( v  =  f  ->  ( A  \  ran  v )  =  ( A  \  ran  f ) )
43fveq2d 5695 . . 3  |-  ( v  =  f  ->  (
h `  ( A  \  ran  v ) )  =  ( h `  ( A  \  ran  f
) ) )
54cbvmptv 4264 . 2  |-  ( v  e.  _V  |->  ( h `
 ( A  \  ran  v ) ) )  =  ( f  e. 
_V  |->  ( h `  ( A  \  ran  f
) ) )
61, 5dfac8alem 7870 1  |-  ( A  e.  B  ->  ( E. h A. y  e. 
~P  A ( y  =/=  (/)  ->  ( h `  y )  e.  y )  ->  A  e.  dom  card ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1547    e. wcel 1721    =/= wne 2571   A.wral 2670   _Vcvv 2920    \ cdif 3281   (/)c0 3592   ~Pcpw 3763    e. cmpt 4230   dom cdm 4841   ran crn 4842   ` cfv 5417  recscrecs 6595   cardccrd 7782
This theorem is referenced by:  ween  7876  acnnum  7893  dfac8  7975
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-suc 4551  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-recs 6596  df-en 7073  df-card 7786
  Copyright terms: Public domain W3C validator