Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac8c Structured version   Unicode version

Theorem dfac8c 7914
 Description: If the union of a set is well-orderable, then the set has a choice function. (Contributed by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
dfac8c
Distinct variable groups:   ,,,   ,
Allowed substitution hints:   (,)

Proof of Theorem dfac8c
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2436 . 2
21dfac8clem 7913 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4  wex 1550   wcel 1725   wne 2599  wral 2705   cdif 3317  c0 3628  csn 3814  cuni 4015   class class class wbr 4212   cmpt 4266   wwe 4540  cfv 5454  crio 6542 This theorem is referenced by:  ween  7916  ac5num  7917  dfac8  8015  vitali  19505 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-fv 5462  df-riota 6549
 Copyright terms: Public domain W3C validator