Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfateq12d Structured version   Unicode version

Theorem dfateq12d 27983
Description: Equality deduction for "defined at". (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypotheses
Ref Expression
dfateq12d.1  |-  ( ph  ->  F  =  G )
dfateq12d.2  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
dfateq12d  |-  ( ph  ->  ( F defAt  A  <->  G defAt  B ) )

Proof of Theorem dfateq12d
StepHypRef Expression
1 dfateq12d.2 . . . 4  |-  ( ph  ->  A  =  B )
2 dfateq12d.1 . . . . 5  |-  ( ph  ->  F  =  G )
32dmeqd 5075 . . . 4  |-  ( ph  ->  dom  F  =  dom  G )
41, 3eleq12d 2506 . . 3  |-  ( ph  ->  ( A  e.  dom  F  <-> 
B  e.  dom  G
) )
51sneqd 3829 . . . . 5  |-  ( ph  ->  { A }  =  { B } )
62, 5reseq12d 5150 . . . 4  |-  ( ph  ->  ( F  |`  { A } )  =  ( G  |`  { B } ) )
76funeqd 5478 . . 3  |-  ( ph  ->  ( Fun  ( F  |`  { A } )  <->  Fun  ( G  |`  { B } ) ) )
84, 7anbi12d 693 . 2  |-  ( ph  ->  ( ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) )  <->  ( B  e.  dom  G  /\  Fun  ( G  |`  { B } ) ) ) )
9 df-dfat 27964 . 2  |-  ( F defAt 
A  <->  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) ) )
10 df-dfat 27964 . 2  |-  ( G defAt 
B  <->  ( B  e. 
dom  G  /\  Fun  ( G  |`  { B }
) ) )
118, 9, 103bitr4g 281 1  |-  ( ph  ->  ( F defAt  A  <->  G defAt  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   {csn 3816   dom cdm 4881    |` cres 4883   Fun wfun 5451   defAt wdfat 27961
This theorem is referenced by:  afveq12d  27987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-br 4216  df-opab 4270  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-res 4893  df-fun 5459  df-dfat 27964
  Copyright terms: Public domain W3C validator