MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfec2 Unicode version

Theorem dfec2 6631
Description: Alternate definition of  R-coset of  A. Definition 34 of [Suppes] p. 81. (Contributed by NM, 3-Jan-1997.) (Proof shortened by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
dfec2  |-  ( A  e.  V  ->  [ A ] R  =  {
y  |  A R y } )
Distinct variable groups:    y, A    y, R
Allowed substitution hint:    V( y)

Proof of Theorem dfec2
StepHypRef Expression
1 df-ec 6630 . 2  |-  [ A ] R  =  ( R " { A }
)
2 imasng 5023 . 2  |-  ( A  e.  V  ->  ( R " { A }
)  =  { y  |  A R y } )
31, 2syl5eq 2302 1  |-  ( A  e.  V  ->  [ A ] R  =  {
y  |  A R y } )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621   {cab 2244   {csn 3614   class class class wbr 3997   "cima 4664   [cec 6626
This theorem is referenced by:  eqglact  14631  tgpconcompeqg  17757  fvline  24143  ellines  24151
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pr 4186
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-sbc 2967  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-sn 3620  df-pr 3621  df-op 3623  df-br 3998  df-opab 4052  df-xp 4675  df-cnv 4677  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-ec 6630
  Copyright terms: Public domain W3C validator