Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfec2 Unicode version

Theorem dfec2 6631
 Description: Alternate definition of -coset of . Definition 34 of [Suppes] p. 81. (Contributed by NM, 3-Jan-1997.) (Proof shortened by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
dfec2
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem dfec2
StepHypRef Expression
1 df-ec 6630 . 2
2 imasng 5023 . 2
31, 2syl5eq 2302 1
 Colors of variables: wff set class Syntax hints:   wi 6   wceq 1619   wcel 1621  cab 2244  csn 3614   class class class wbr 3997  cima 4664  cec 6626 This theorem is referenced by:  eqglact  14631  tgpconcompeqg  17757  fvline  24143  ellines  24151 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pr 4186 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-sbc 2967  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-sn 3620  df-pr 3621  df-op 3623  df-br 3998  df-opab 4052  df-xp 4675  df-cnv 4677  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-ec 6630
 Copyright terms: Public domain W3C validator