MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffr2 Unicode version

Theorem dffr2 4358
Description: Alternate definition of well-founded relation. Similar to Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by Mario Carneiro, 23-Jun-2015.)
Assertion
Ref Expression
dffr2  |-  ( R  Fr  A  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  { z  e.  x  |  z R y }  =  (/) ) )
Distinct variable groups:    x, y,
z, A    x, R, y, z

Proof of Theorem dffr2
StepHypRef Expression
1 df-fr 4352 . 2  |-  ( R  Fr  A  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y ) )
2 rabeq0 3476 . . . . 5  |-  ( { z  e.  x  |  z R y }  =  (/)  <->  A. z  e.  x  -.  z R y )
32rexbii 2568 . . . 4  |-  ( E. y  e.  x  {
z  e.  x  |  z R y }  =  (/)  <->  E. y  e.  x  A. z  e.  x  -.  z R y )
43imbi2i 303 . . 3  |-  ( ( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  { z  e.  x  |  z R y }  =  (/) )  <->  ( (
x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y ) )
54albii 1553 . 2  |-  ( A. x ( ( x 
C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  { z  e.  x  |  z R y }  =  (/) )  <->  A. x ( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y ) )
61, 5bitr4i 243 1  |-  ( R  Fr  A  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  { z  e.  x  |  z R y }  =  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527    = wceq 1623    =/= wne 2446   A.wral 2543   E.wrex 2544   {crab 2547    C_ wss 3152   (/)c0 3455   class class class wbr 4023    Fr wfr 4349
This theorem is referenced by:  fr0  4372  dfepfr  4378  dffr3  5045
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-nul 3456  df-fr 4352
  Copyright terms: Public domain W3C validator