MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffr3 Unicode version

Theorem dffr3 5033
Description: Alternate definition of well-founded relation. Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 23-Apr-2004.) (Revised by Mario Carneiro, 23-Jun-2015.)
Assertion
Ref Expression
dffr3  |-  ( R  Fr  A  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) ) )
Distinct variable groups:    x, y, A    x, R, y

Proof of Theorem dffr3
StepHypRef Expression
1 dffr2 4330 . 2  |-  ( R  Fr  A  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  { z  e.  x  |  z R y }  =  (/) ) )
2 vex 2766 . . . . . . . . 9  |-  y  e. 
_V
3 iniseg 5032 . . . . . . . . 9  |-  ( y  e.  _V  ->  ( `' R " { y } )  =  {
z  |  z R y } )
42, 3ax-mp 10 . . . . . . . 8  |-  ( `' R " { y } )  =  {
z  |  z R y }
54ineq2i 3342 . . . . . . 7  |-  ( x  i^i  ( `' R " { y } ) )  =  ( x  i^i  { z  |  z R y } )
6 dfrab3 3419 . . . . . . 7  |-  { z  e.  x  |  z R y }  =  ( x  i^i  { z  |  z R y } )
75, 6eqtr4i 2281 . . . . . 6  |-  ( x  i^i  ( `' R " { y } ) )  =  { z  e.  x  |  z R y }
87eqeq1i 2265 . . . . 5  |-  ( ( x  i^i  ( `' R " { y } ) )  =  (/) 
<->  { z  e.  x  |  z R y }  =  (/) )
98rexbii 2543 . . . 4  |-  ( E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) 
<->  E. y  e.  x  { z  e.  x  |  z R y }  =  (/) )
109imbi2i 305 . . 3  |-  ( ( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) )  <->  ( ( x 
C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  { z  e.  x  |  z R y }  =  (/) ) )
1110albii 1554 . 2  |-  ( A. x ( ( x 
C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) )  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  { z  e.  x  |  z R y }  =  (/) ) )
121, 11bitr4i 245 1  |-  ( R  Fr  A  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1532    = wceq 1619    e. wcel 1621   {cab 2244    =/= wne 2421   E.wrex 2519   {crab 2522   _Vcvv 2763    i^i cin 3126    C_ wss 3127   (/)c0 3430   {csn 3614   class class class wbr 3997    Fr wfr 4321   `'ccnv 4660   "cima 4664
This theorem is referenced by:  isofrlem  5771  dffr4  23552
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pr 4186
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-sbc 2967  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-sn 3620  df-pr 3621  df-op 3623  df-br 3998  df-opab 4052  df-fr 4324  df-xp 4675  df-cnv 4677  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682
  Copyright terms: Public domain W3C validator