MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffr3 Unicode version

Theorem dffr3 4998
Description: Alternate definition of well-founded relation. Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 23-Apr-2004.) (Revised by Mario Carneiro, 23-Jun-2015.)
Assertion
Ref Expression
dffr3  |-  ( R  Fr  A  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) ) )
Distinct variable groups:    x, y, A    x, R, y

Proof of Theorem dffr3
StepHypRef Expression
1 dffr2 4295 . 2  |-  ( R  Fr  A  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  { z  e.  x  |  z R y }  =  (/) ) )
2 vex 2743 . . . . . . . . 9  |-  y  e. 
_V
3 iniseg 4997 . . . . . . . . 9  |-  ( y  e.  _V  ->  ( `' R " { y } )  =  {
z  |  z R y } )
42, 3ax-mp 10 . . . . . . . 8  |-  ( `' R " { y } )  =  {
z  |  z R y }
54ineq2i 3309 . . . . . . 7  |-  ( x  i^i  ( `' R " { y } ) )  =  ( x  i^i  { z  |  z R y } )
6 dfrab3 3386 . . . . . . 7  |-  { z  e.  x  |  z R y }  =  ( x  i^i  { z  |  z R y } )
75, 6eqtr4i 2279 . . . . . 6  |-  ( x  i^i  ( `' R " { y } ) )  =  { z  e.  x  |  z R y }
87eqeq1i 2263 . . . . 5  |-  ( ( x  i^i  ( `' R " { y } ) )  =  (/) 
<->  { z  e.  x  |  z R y }  =  (/) )
98rexbii 2539 . . . 4  |-  ( E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) 
<->  E. y  e.  x  { z  e.  x  |  z R y }  =  (/) )
109imbi2i 305 . . 3  |-  ( ( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) )  <->  ( ( x 
C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  { z  e.  x  |  z R y }  =  (/) ) )
1110albii 1554 . 2  |-  ( A. x ( ( x 
C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) )  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  { z  e.  x  |  z R y }  =  (/) ) )
121, 11bitr4i 245 1  |-  ( R  Fr  A  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  ( x  i^i  ( `' R " { y } ) )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1532    = wceq 1619    e. wcel 1621   {cab 2242    =/= wne 2419   E.wrex 2517   {crab 2519   _Vcvv 2740    i^i cin 3093    C_ wss 3094   (/)c0 3397   {csn 3581   class class class wbr 3963    Fr wfr 4286   `'ccnv 4625   "cima 4629
This theorem is referenced by:  isofrlem  5736  dffr4  23516
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-sbc 2936  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-sn 3587  df-pr 3588  df-op 3590  df-br 3964  df-opab 4018  df-fr 4289  df-xp 4640  df-cnv 4642  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647
  Copyright terms: Public domain W3C validator