MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun4 Unicode version

Theorem dffun4 5269
Description: Alternate definition of a function. Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dffun4  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem dffun4
StepHypRef Expression
1 dffun2 5267 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( x A y  /\  x A z )  -> 
y  =  z ) ) )
2 df-br 4026 . . . . . . 7  |-  ( x A y  <->  <. x ,  y >.  e.  A
)
3 df-br 4026 . . . . . . 7  |-  ( x A z  <->  <. x ,  z >.  e.  A
)
42, 3anbi12i 678 . . . . . 6  |-  ( ( x A y  /\  x A z )  <->  ( <. x ,  y >.  e.  A  /\  <. x ,  z
>.  e.  A ) )
54imbi1i 315 . . . . 5  |-  ( ( ( x A y  /\  x A z )  ->  y  =  z )  <->  ( ( <. x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) )
65albii 1555 . . . 4  |-  ( A. z ( ( x A y  /\  x A z )  -> 
y  =  z )  <->  A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) )
762albii 1556 . . 3  |-  ( A. x A. y A. z
( ( x A y  /\  x A z )  ->  y  =  z )  <->  A. x A. y A. z ( ( <. x ,  y
>.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) )
87anbi2i 675 . 2  |-  ( ( Rel  A  /\  A. x A. y A. z
( ( x A y  /\  x A z )  ->  y  =  z ) )  <-> 
( Rel  A  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) ) )
91, 8bitri 240 1  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1529    = wceq 1625    e. wcel 1686   <.cop 3645   class class class wbr 4025   Rel wrel 4696   Fun wfun 5251
This theorem is referenced by:  funopg  5288  funun  5298  fununi  5318  tfrlem7  6401  hashfun  11391  elfuns  24456  bnj1379  28936
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pr 4216
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rab 2554  df-v 2792  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-sn 3648  df-pr 3649  df-op 3651  df-br 4026  df-opab 4080  df-id 4311  df-cnv 4699  df-co 4700  df-fun 5259
  Copyright terms: Public domain W3C validator