MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun4 Unicode version

Theorem dffun4 5370
Description: Alternate definition of a function. Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dffun4  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem dffun4
StepHypRef Expression
1 dffun2 5368 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( x A y  /\  x A z )  -> 
y  =  z ) ) )
2 df-br 4126 . . . . . . 7  |-  ( x A y  <->  <. x ,  y >.  e.  A
)
3 df-br 4126 . . . . . . 7  |-  ( x A z  <->  <. x ,  z >.  e.  A
)
42, 3anbi12i 678 . . . . . 6  |-  ( ( x A y  /\  x A z )  <->  ( <. x ,  y >.  e.  A  /\  <. x ,  z
>.  e.  A ) )
54imbi1i 315 . . . . 5  |-  ( ( ( x A y  /\  x A z )  ->  y  =  z )  <->  ( ( <. x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) )
65albii 1571 . . . 4  |-  ( A. z ( ( x A y  /\  x A z )  -> 
y  =  z )  <->  A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) )
762albii 1572 . . 3  |-  ( A. x A. y A. z
( ( x A y  /\  x A z )  ->  y  =  z )  <->  A. x A. y A. z ( ( <. x ,  y
>.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) )
87anbi2i 675 . 2  |-  ( ( Rel  A  /\  A. x A. y A. z
( ( x A y  /\  x A z )  ->  y  =  z ) )  <-> 
( Rel  A  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) ) )
91, 8bitri 240 1  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1545    = wceq 1647    e. wcel 1715   <.cop 3732   class class class wbr 4125   Rel wrel 4797   Fun wfun 5352
This theorem is referenced by:  funopg  5389  funun  5399  fununi  5421  tfrlem7  6541  hashfun  11587  elfuns  25280  bnj1379  28615
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pr 4316
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rab 2637  df-v 2875  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-sn 3735  df-pr 3736  df-op 3738  df-br 4126  df-opab 4180  df-id 4412  df-cnv 4800  df-co 4801  df-fun 5360
  Copyright terms: Public domain W3C validator