MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun7 Unicode version

Theorem dffun7 5470
Description: Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. (Enderton's definition is ambiguous because "there is only one" could mean either "there is at most one" or "there is exactly one." However, dffun8 5471 shows that it doesn't matter which meaning we pick.) (Contributed by NM, 4-Nov-2002.)
Assertion
Ref Expression
dffun7  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  x A y ) )
Distinct variable group:    x, y, A

Proof of Theorem dffun7
StepHypRef Expression
1 dffun6 5460 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x E* y  x A y ) )
2 moabs 2324 . . . . . 6  |-  ( E* y  x A y  <-> 
( E. y  x A y  ->  E* y  x A y ) )
3 vex 2951 . . . . . . . 8  |-  x  e. 
_V
43eldm 5058 . . . . . . 7  |-  ( x  e.  dom  A  <->  E. y  x A y )
54imbi1i 316 . . . . . 6  |-  ( ( x  e.  dom  A  ->  E* y  x A y )  <->  ( E. y  x A y  ->  E* y  x A
y ) )
62, 5bitr4i 244 . . . . 5  |-  ( E* y  x A y  <-> 
( x  e.  dom  A  ->  E* y  x A y ) )
76albii 1575 . . . 4  |-  ( A. x E* y  x A y  <->  A. x ( x  e.  dom  A  ->  E* y  x A
y ) )
8 df-ral 2702 . . . 4  |-  ( A. x  e.  dom  A E* y  x A y  <->  A. x
( x  e.  dom  A  ->  E* y  x A y ) )
97, 8bitr4i 244 . . 3  |-  ( A. x E* y  x A y  <->  A. x  e.  dom  A E* y  x A y )
109anbi2i 676 . 2  |-  ( ( Rel  A  /\  A. x E* y  x A y )  <->  ( Rel  A  /\  A. x  e. 
dom  A E* y  x A y ) )
111, 10bitri 241 1  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  x A y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1549   E.wex 1550    e. wcel 1725   E*wmo 2281   A.wral 2697   class class class wbr 4204   dom cdm 4869   Rel wrel 4874   Fun wfun 5439
This theorem is referenced by:  dffun8  5471  dffun9  5472  brdom5  8396  imasaddfnlem  13741  imasvscafn  13750  funressnfv  27906
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-id 4490  df-cnv 4877  df-co 4878  df-dm 4879  df-fun 5447
  Copyright terms: Public domain W3C validator