MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun7 Unicode version

Theorem dffun7 5219
Description: Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. (Enderton's definition is ambiguous because "there is only one" could mean either "there is at most one" or "there is exactly one." However, dffun8 5220 shows that it doesn't matter which meaning we pick.) (Contributed by NM, 4-Nov-2002.)
Assertion
Ref Expression
dffun7  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  x A y ) )
Distinct variable group:    x, y, A

Proof of Theorem dffun7
StepHypRef Expression
1 dffun6 5209 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x E* y  x A y ) )
2 moabs 2162 . . . . . 6  |-  ( E* y  x A y  <-> 
( E. y  x A y  ->  E* y  x A y ) )
3 vex 2766 . . . . . . . 8  |-  x  e. 
_V
43eldm 4864 . . . . . . 7  |-  ( x  e.  dom  A  <->  E. y  x A y )
54imbi1i 317 . . . . . 6  |-  ( ( x  e.  dom  A  ->  E* y  x A y )  <->  ( E. y  x A y  ->  E* y  x A
y ) )
62, 5bitr4i 245 . . . . 5  |-  ( E* y  x A y  <-> 
( x  e.  dom  A  ->  E* y  x A y ) )
76albii 1554 . . . 4  |-  ( A. x E* y  x A y  <->  A. x ( x  e.  dom  A  ->  E* y  x A
y ) )
8 df-ral 2523 . . . 4  |-  ( A. x  e.  dom  A E* y  x A y  <->  A. x
( x  e.  dom  A  ->  E* y  x A y ) )
97, 8bitr4i 245 . . 3  |-  ( A. x E* y  x A y  <->  A. x  e.  dom  A E* y  x A y )
109anbi2i 678 . 2  |-  ( ( Rel  A  /\  A. x E* y  x A y )  <->  ( Rel  A  /\  A. x  e. 
dom  A E* y  x A y ) )
111, 10bitri 242 1  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  x A y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1532   E.wex 1537    e. wcel 1621   E*wmo 2119   A.wral 2518   class class class wbr 3997   dom cdm 4661   Rel wrel 4666   Fun wfun 4667
This theorem is referenced by:  dffun8  5220  dffun9  5221  brdom5  8122  imasaddfnlem  13392  imasvscafn  13401
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pr 4186
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rab 2527  df-v 2765  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-sn 3620  df-pr 3621  df-op 3623  df-br 3998  df-opab 4052  df-id 4281  df-cnv 4677  df-co 4678  df-dm 4679  df-fun 4683
  Copyright terms: Public domain W3C validator