MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfif6 Unicode version

Theorem dfif6 3473
Description: An alternate definition of the conditional operator df-if 3471 as a simple class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
dfif6  |-  if (
ph ,  A ,  B )  =  ( { x  e.  A  |  ph }  u.  {
x  e.  B  |  -.  ph } )
Distinct variable groups:    ph, x    x, A    x, B

Proof of Theorem dfif6
StepHypRef Expression
1 unab 3342 . 2  |-  ( { x  |  ( x  e.  A  /\  ph ) }  u.  { x  |  ( x  e.  B  /\  -.  ph ) } )  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }
2 df-rab 2516 . . 3  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
3 df-rab 2516 . . 3  |-  { x  e.  B  |  -.  ph }  =  { x  |  ( x  e.  B  /\  -.  ph ) }
42, 3uneq12i 3237 . 2  |-  ( { x  e.  A  |  ph }  u.  { x  e.  B  |  -.  ph } )  =  ( { x  |  ( x  e.  A  /\  ph ) }  u.  {
x  |  ( x  e.  B  /\  -.  ph ) } )
5 df-if 3471 . 2  |-  if (
ph ,  A ,  B )  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }
61, 4, 53eqtr4ri 2284 1  |-  if (
ph ,  A ,  B )  =  ( { x  e.  A  |  ph }  u.  {
x  e.  B  |  -.  ph } )
Colors of variables: wff set class
Syntax hints:   -. wn 5    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621   {cab 2239   {crab 2512    u. cun 3076   ifcif 3470
This theorem is referenced by:  ifeq1  3474  ifeq2  3475  dfif3  3480
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-rab 2516  df-v 2729  df-un 3083  df-if 3471
  Copyright terms: Public domain W3C validator