MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiin2 Unicode version

Theorem dfiin2 4118
Description: Alternate definition of indexed intersection when  B is a set. Definition 15(b) of [Suppes] p. 44. (Contributed by NM, 28-Jun-1998.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Hypothesis
Ref Expression
dfiun2.1  |-  B  e. 
_V
Assertion
Ref Expression
dfiin2  |-  |^|_ x  e.  A  B  =  |^| { y  |  E. x  e.  A  y  =  B }
Distinct variable groups:    x, y    y, A    y, B
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem dfiin2
StepHypRef Expression
1 dfiin2g 4116 . 2  |-  ( A. x  e.  A  B  e.  _V  ->  |^|_ x  e.  A  B  =  |^| { y  |  E. x  e.  A  y  =  B } )
2 dfiun2.1 . . 3  |-  B  e. 
_V
32a1i 11 . 2  |-  ( x  e.  A  ->  B  e.  _V )
41, 3mprg 2767 1  |-  |^|_ x  e.  A  B  =  |^| { y  |  E. x  e.  A  y  =  B }
Colors of variables: wff set class
Syntax hints:    = wceq 1652    e. wcel 1725   {cab 2421   E.wrex 2698   _Vcvv 2948   |^|cint 4042   |^|_ciin 4086
This theorem is referenced by:  fniinfv  5776  scott0  7799  cfval2  8129  cflim3  8131  cflim2  8132  cfss  8134  hauscmplem  17457  ptbasfi  17601  dihglblem5  31935  dihglb2  31979
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-v 2950  df-int 4043  df-iin 4088
  Copyright terms: Public domain W3C validator