MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfima3 Unicode version

Theorem dfima3 5169
Description: Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dfima3  |-  ( A
" B )  =  { y  |  E. x ( x  e.  B  /\  <. x ,  y >.  e.  A
) }
Distinct variable groups:    x, y, A    x, B, y

Proof of Theorem dfima3
StepHypRef Expression
1 dfima2 5168 . 2  |-  ( A
" B )  =  { y  |  E. x  e.  B  x A y }
2 df-br 4177 . . . . 5  |-  ( x A y  <->  <. x ,  y >.  e.  A
)
32rexbii 2695 . . . 4  |-  ( E. x  e.  B  x A y  <->  E. x  e.  B  <. x ,  y >.  e.  A
)
4 df-rex 2676 . . . 4  |-  ( E. x  e.  B  <. x ,  y >.  e.  A  <->  E. x ( x  e.  B  /\  <. x ,  y >.  e.  A
) )
53, 4bitri 241 . . 3  |-  ( E. x  e.  B  x A y  <->  E. x
( x  e.  B  /\  <. x ,  y
>.  e.  A ) )
65abbii 2520 . 2  |-  { y  |  E. x  e.  B  x A y }  =  { y  |  E. x ( x  e.  B  /\  <.
x ,  y >.  e.  A ) }
71, 6eqtri 2428 1  |-  ( A
" B )  =  { y  |  E. x ( x  e.  B  /\  <. x ,  y >.  e.  A
) }
Colors of variables: wff set class
Syntax hints:    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1721   {cab 2394   E.wrex 2671   <.cop 3781   class class class wbr 4176   "cima 4844
This theorem is referenced by:  imadmrn  5178  imassrn  5179  imai  5181  funimaexg  5493  rdglim2  6653
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pr 4367
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-rab 2679  df-v 2922  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-sn 3784  df-pr 3785  df-op 3787  df-br 4177  df-opab 4231  df-xp 4847  df-cnv 4849  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854
  Copyright terms: Public domain W3C validator