MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfima3 Unicode version

Theorem dfima3 5003
Description: Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dfima3  |-  ( A
" B )  =  { y  |  E. x ( x  e.  B  /\  <. x ,  y >.  e.  A
) }
Distinct variable groups:    x, y, A    x, B, y

Proof of Theorem dfima3
StepHypRef Expression
1 dfima2 5002 . 2  |-  ( A
" B )  =  { y  |  E. x  e.  B  x A y }
2 df-br 3998 . . . . 5  |-  ( x A y  <->  <. x ,  y >.  e.  A
)
32rexbii 2543 . . . 4  |-  ( E. x  e.  B  x A y  <->  E. x  e.  B  <. x ,  y >.  e.  A
)
4 df-rex 2524 . . . 4  |-  ( E. x  e.  B  <. x ,  y >.  e.  A  <->  E. x ( x  e.  B  /\  <. x ,  y >.  e.  A
) )
53, 4bitri 242 . . 3  |-  ( E. x  e.  B  x A y  <->  E. x
( x  e.  B  /\  <. x ,  y
>.  e.  A ) )
65abbii 2370 . 2  |-  { y  |  E. x  e.  B  x A y }  =  { y  |  E. x ( x  e.  B  /\  <.
x ,  y >.  e.  A ) }
71, 6eqtri 2278 1  |-  ( A
" B )  =  { y  |  E. x ( x  e.  B  /\  <. x ,  y >.  e.  A
) }
Colors of variables: wff set class
Syntax hints:    /\ wa 360   E.wex 1537    = wceq 1619    e. wcel 1621   {cab 2244   E.wrex 2519   <.cop 3617   class class class wbr 3997   "cima 4664
This theorem is referenced by:  imadmrn  5012  imassrn  5013  imai  5015  funimaexg  5267  rdglim2  6413
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pr 4186
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-sn 3620  df-pr 3621  df-op 3623  df-br 3998  df-opab 4052  df-xp 4675  df-cnv 4677  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682
  Copyright terms: Public domain W3C validator