MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfin3 Unicode version

Theorem dfin3 3525
Description: Intersection defined in terms of union (De Morgan's law. Similar to Exercise 4.10(n) of [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
dfin3  |-  ( A  i^i  B )  =  ( _V  \  (
( _V  \  A
)  u.  ( _V 
\  B ) ) )

Proof of Theorem dfin3
StepHypRef Expression
1 ddif 3424 . 2  |-  ( _V 
\  ( _V  \ 
( A  \  ( _V  \  B ) ) ) )  =  ( A  \  ( _V 
\  B ) )
2 dfun2 3521 . . . 4  |-  ( ( _V  \  A )  u.  ( _V  \  B ) )  =  ( _V  \  (
( _V  \  ( _V  \  A ) ) 
\  ( _V  \  B ) ) )
3 ddif 3424 . . . . . 6  |-  ( _V 
\  ( _V  \  A ) )  =  A
43difeq1i 3406 . . . . 5  |-  ( ( _V  \  ( _V 
\  A ) ) 
\  ( _V  \  B ) )  =  ( A  \  ( _V  \  B ) )
54difeq2i 3407 . . . 4  |-  ( _V 
\  ( ( _V 
\  ( _V  \  A ) )  \ 
( _V  \  B
) ) )  =  ( _V  \  ( A  \  ( _V  \  B ) ) )
62, 5eqtri 2409 . . 3  |-  ( ( _V  \  A )  u.  ( _V  \  B ) )  =  ( _V  \  ( A  \  ( _V  \  B ) ) )
76difeq2i 3407 . 2  |-  ( _V 
\  ( ( _V 
\  A )  u.  ( _V  \  B
) ) )  =  ( _V  \  ( _V  \  ( A  \ 
( _V  \  B
) ) ) )
8 dfin2 3522 . 2  |-  ( A  i^i  B )  =  ( A  \  ( _V  \  B ) )
91, 7, 83eqtr4ri 2420 1  |-  ( A  i^i  B )  =  ( _V  \  (
( _V  \  A
)  u.  ( _V 
\  B ) ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1649   _Vcvv 2901    \ cdif 3262    u. cun 3263    i^i cin 3264
This theorem is referenced by:  difindi  3540
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ral 2656  df-rab 2660  df-v 2903  df-dif 3268  df-un 3270  df-in 3272
  Copyright terms: Public domain W3C validator