MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfin4 Unicode version

Theorem dfin4 3351
Description: Alternate definition of the intersection of two classes. Exercise 4.10(q) of [Mendelson] p. 231. (Contributed by NM, 25-Nov-2003.)
Assertion
Ref Expression
dfin4  |-  ( A  i^i  B )  =  ( A  \  ( A  \  B ) )

Proof of Theorem dfin4
StepHypRef Expression
1 inss1 3331 . . 3  |-  ( A  i^i  B )  C_  A
2 dfss4 3345 . . 3  |-  ( ( A  i^i  B ) 
C_  A  <->  ( A  \  ( A  \  ( A  i^i  B ) ) )  =  ( A  i^i  B ) )
31, 2mpbi 201 . 2  |-  ( A 
\  ( A  \ 
( A  i^i  B
) ) )  =  ( A  i^i  B
)
4 difin 3348 . . 3  |-  ( A 
\  ( A  i^i  B ) )  =  ( A  \  B )
54difeq2i 3233 . 2  |-  ( A 
\  ( A  \ 
( A  i^i  B
) ) )  =  ( A  \  ( A  \  B ) )
63, 5eqtr3i 2278 1  |-  ( A  i^i  B )  =  ( A  \  ( A  \  B ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1619    \ cdif 3091    i^i cin 3093    C_ wss 3094
This theorem is referenced by:  indif  3353  cnvin  5041  imain  5231  resin  5398  elcls  16737  cmmbl  18819  mbfeqalem  18924  itg1addlem4  18981  itg1addlem5  18982  stoweidlem50  27099
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ral 2520  df-rab 2523  df-v 2742  df-dif 3097  df-in 3101  df-ss 3108
  Copyright terms: Public domain W3C validator