MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfinfmr Structured version   Unicode version

Theorem dfinfmr 9990
Description: The infimum (expressed as supremum with converse 'less-than') of a set of reals  A. (Contributed by NM, 9-Oct-2005.)
Assertion
Ref Expression
dfinfmr  |-  ( A 
C_  RR  ->  sup ( A ,  RR ,  `'  <  )  =  U. { x  e.  RR  |  ( A. y  e.  A  x  <_  y  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) ) } )
Distinct variable group:    x, y, z, A

Proof of Theorem dfinfmr
StepHypRef Expression
1 df-sup 7449 . 2  |-  sup ( A ,  RR ,  `'  <  )  =  U. { x  e.  RR  |  ( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  (
y `'  <  x  ->  E. z  e.  A  y `'  <  z ) ) }
2 ssel2 3345 . . . . . . . . 9  |-  ( ( A  C_  RR  /\  y  e.  A )  ->  y  e.  RR )
3 lenlt 9159 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  <_  y  <->  -.  y  <  x ) )
4 vex 2961 . . . . . . . . . . . 12  |-  x  e. 
_V
5 vex 2961 . . . . . . . . . . . 12  |-  y  e. 
_V
64, 5brcnv 5058 . . . . . . . . . . 11  |-  ( x `'  <  y  <->  y  <  x )
76notbii 289 . . . . . . . . . 10  |-  ( -.  x `'  <  y  <->  -.  y  <  x )
83, 7syl6rbbr 257 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( -.  x `'  <  y  <->  x  <_  y ) )
92, 8sylan2 462 . . . . . . . 8  |-  ( ( x  e.  RR  /\  ( A  C_  RR  /\  y  e.  A )
)  ->  ( -.  x `'  <  y  <->  x  <_  y ) )
109ancoms 441 . . . . . . 7  |-  ( ( ( A  C_  RR  /\  y  e.  A )  /\  x  e.  RR )  ->  ( -.  x `'  <  y  <->  x  <_  y ) )
1110an32s 781 . . . . . 6  |-  ( ( ( A  C_  RR  /\  x  e.  RR )  /\  y  e.  A
)  ->  ( -.  x `'  <  y  <->  x  <_  y ) )
1211ralbidva 2723 . . . . 5  |-  ( ( A  C_  RR  /\  x  e.  RR )  ->  ( A. y  e.  A  -.  x `'  <  y  <->  A. y  e.  A  x  <_  y ) )
135, 4brcnv 5058 . . . . . . . 8  |-  ( y `'  <  x  <->  x  <  y )
14 vex 2961 . . . . . . . . . 10  |-  z  e. 
_V
155, 14brcnv 5058 . . . . . . . . 9  |-  ( y `'  <  z  <->  z  <  y )
1615rexbii 2732 . . . . . . . 8  |-  ( E. z  e.  A  y `'  <  z  <->  E. z  e.  A  z  <  y )
1713, 16imbi12i 318 . . . . . . 7  |-  ( ( y `'  <  x  ->  E. z  e.  A  y `'  <  z )  <-> 
( x  <  y  ->  E. z  e.  A  z  <  y ) )
1817ralbii 2731 . . . . . 6  |-  ( A. y  e.  RR  (
y `'  <  x  ->  E. z  e.  A  y `'  <  z )  <->  A. y  e.  RR  ( x  <  y  ->  E. z  e.  A  z  <  y ) )
1918a1i 11 . . . . 5  |-  ( ( A  C_  RR  /\  x  e.  RR )  ->  ( A. y  e.  RR  ( y `'  <  x  ->  E. z  e.  A  y `'  <  z )  <->  A. y  e.  RR  ( x  <  y  ->  E. z  e.  A  z  <  y ) ) )
2012, 19anbi12d 693 . . . 4  |-  ( ( A  C_  RR  /\  x  e.  RR )  ->  (
( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  (
y `'  <  x  ->  E. z  e.  A  y `'  <  z ) )  <->  ( A. y  e.  A  x  <_  y  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) ) ) )
2120rabbidva 2949 . . 3  |-  ( A 
C_  RR  ->  { x  e.  RR  |  ( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  (
y `'  <  x  ->  E. z  e.  A  y `'  <  z ) ) }  =  {
x  e.  RR  | 
( A. y  e.  A  x  <_  y  /\  A. y  e.  RR  ( x  <  y  ->  E. z  e.  A  z  <  y ) ) } )
2221unieqd 4028 . 2  |-  ( A 
C_  RR  ->  U. {
x  e.  RR  | 
( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  (
y `'  <  x  ->  E. z  e.  A  y `'  <  z ) ) }  =  U. { x  e.  RR  |  ( A. y  e.  A  x  <_  y  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) ) } )
231, 22syl5eq 2482 1  |-  ( A 
C_  RR  ->  sup ( A ,  RR ,  `'  <  )  =  U. { x  e.  RR  |  ( A. y  e.  A  x  <_  y  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) ) } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708   {crab 2711    C_ wss 3322   U.cuni 4017   class class class wbr 4215   `'ccnv 4880   supcsup 7448   RRcr 8994    < clt 9125    <_ cle 9126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-xp 4887  df-cnv 4889  df-sup 7449  df-xr 9129  df-le 9131
  Copyright terms: Public domain W3C validator