MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiun2 Unicode version

Theorem dfiun2 3939
Description: Alternate definition of indexed union when  B is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 27-Jun-1998.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
dfiun2.1  |-  B  e. 
_V
Assertion
Ref Expression
dfiun2  |-  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B }
Distinct variable groups:    x, y    y, A    y, B
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem dfiun2
StepHypRef Expression
1 dfiun2g 3937 . 2  |-  ( A. x  e.  A  B  e.  _V  ->  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B } )
2 dfiun2.1 . . 3  |-  B  e. 
_V
32a1i 12 . 2  |-  ( x  e.  A  ->  B  e.  _V )
41, 3mprg 2614 1  |-  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B }
Colors of variables: wff set class
Syntax hints:    = wceq 1624    e. wcel 1685   {cab 2271   E.wrex 2546   _Vcvv 2790   U.cuni 3829   U_ciun 3907
This theorem is referenced by:  funcnvuni  5283  fun11iun  5459  fniunfv  5735  tfrlem8  6396  rdglim2a  6442  rankuni  7531  cardiun  7611  kmlem11  7782  cfslb2n  7890  enfin2i  7943  pwcfsdom  8201  rankcf  8395  tskuni  8401  discmp  17120  cmpsublem  17121  cmpsub  17122
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ral 2550  df-rex 2551  df-v 2792  df-uni 3830  df-iun 3909
  Copyright terms: Public domain W3C validator