MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiun2 Unicode version

Theorem dfiun2 3878
Description: Alternate definition of indexed union when  B is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 27-Jun-1998.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
dfiun2.1  |-  B  e. 
_V
Assertion
Ref Expression
dfiun2  |-  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B }
Distinct variable groups:    x, y    y, A    y, B
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem dfiun2
StepHypRef Expression
1 dfiun2g 3876 . 2  |-  ( A. x  e.  A  B  e.  _V  ->  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B } )
2 dfiun2.1 . . 3  |-  B  e. 
_V
32a1i 12 . 2  |-  ( x  e.  A  ->  B  e.  _V )
41, 3mprg 2583 1  |-  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B }
Colors of variables: wff set class
Syntax hints:    = wceq 1619    e. wcel 1621   {cab 2242   E.wrex 2517   _Vcvv 2740   U.cuni 3768   U_ciun 3846
This theorem is referenced by:  funcnvuni  5220  fun11iun  5396  fniunfv  5672  tfrlem8  6333  rdglim2a  6379  rankuni  7468  cardiun  7548  kmlem11  7719  cfslb2n  7827  enfin2i  7880  pwcfsdom  8138  rankcf  8332  tskuni  8338  discmp  17052  cmpsublem  17053  cmpsub  17054
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ral 2520  df-rex 2521  df-v 2742  df-uni 3769  df-iun 3848
  Copyright terms: Public domain W3C validator