MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnn3 Unicode version

Theorem dfnn3 9756
Description: Alternate definition of the set of natural numbers. Definition of positive integers in [Apostol] p. 22. (Contributed by NM, 3-Jul-2005.)
Assertion
Ref Expression
dfnn3  |-  NN  =  |^| { x  |  ( x  C_  RR  /\  1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
Distinct variable group:    x, y

Proof of Theorem dfnn3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eleq2 2345 . . . 4  |-  ( x  =  z  ->  (
1  e.  x  <->  1  e.  z ) )
2 eleq2 2345 . . . . 5  |-  ( x  =  z  ->  (
( y  +  1 )  e.  x  <->  ( y  +  1 )  e.  z ) )
32raleqbi1dv 2745 . . . 4  |-  ( x  =  z  ->  ( A. y  e.  x  ( y  +  1 )  e.  x  <->  A. y  e.  z  ( y  +  1 )  e.  z ) )
41, 3anbi12d 691 . . 3  |-  ( x  =  z  ->  (
( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) ) )
5 dfnn2 9755 . . . . 5  |-  NN  =  |^| { z  |  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) }
65eqeq2i 2294 . . . 4  |-  ( x  =  NN  <->  x  =  |^| { z  |  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) } )
7 eleq2 2345 . . . . 5  |-  ( x  =  NN  ->  (
1  e.  x  <->  1  e.  NN ) )
8 eleq2 2345 . . . . . 6  |-  ( x  =  NN  ->  (
( y  +  1 )  e.  x  <->  ( y  +  1 )  e.  NN ) )
98raleqbi1dv 2745 . . . . 5  |-  ( x  =  NN  ->  ( A. y  e.  x  ( y  +  1 )  e.  x  <->  A. y  e.  NN  ( y  +  1 )  e.  NN ) )
107, 9anbi12d 691 . . . 4  |-  ( x  =  NN  ->  (
( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( 1  e.  NN  /\ 
A. y  e.  NN  ( y  +  1 )  e.  NN ) ) )
116, 10sylbir 204 . . 3  |-  ( x  =  |^| { z  |  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) }  ->  ( ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( 1  e.  NN  /\ 
A. y  e.  NN  ( y  +  1 )  e.  NN ) ) )
12 nnssre 9746 . . . . 5  |-  NN  C_  RR
135, 12eqsstr3i 3210 . . . 4  |-  |^| { z  |  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) }  C_  RR
14 1nn 9753 . . . . 5  |-  1  e.  NN
15 peano2nn 9754 . . . . . 6  |-  ( y  e.  NN  ->  (
y  +  1 )  e.  NN )
1615rgen 2609 . . . . 5  |-  A. y  e.  NN  ( y  +  1 )  e.  NN
1714, 16pm3.2i 441 . . . 4  |-  ( 1  e.  NN  /\  A. y  e.  NN  (
y  +  1 )  e.  NN )
1813, 17pm3.2i 441 . . 3  |-  ( |^| { z  |  ( 1  e.  z  /\  A. y  e.  z  (
y  +  1 )  e.  z ) } 
C_  RR  /\  (
1  e.  NN  /\  A. y  e.  NN  (
y  +  1 )  e.  NN ) )
194, 11, 18intabs 4175 . 2  |-  |^| { x  |  ( x  C_  RR  /\  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) ) }  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
20 3anass 938 . . . 4  |-  ( ( x  C_  RR  /\  1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <->  ( x  C_  RR  /\  ( 1  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) ) )
2120abbii 2396 . . 3  |-  { x  |  ( x  C_  RR  /\  1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  =  { x  |  ( x  C_  RR  /\  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) ) }
2221inteqi 3867 . 2  |-  |^| { x  |  ( x  C_  RR  /\  1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  =  |^| { x  |  ( x  C_  RR  /\  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) ) }
23 dfnn2 9755 . 2  |-  NN  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
2419, 22, 233eqtr4ri 2315 1  |-  NN  =  |^| { x  |  ( x  C_  RR  /\  1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1685   {cab 2270   A.wral 2544    C_ wss 3153   |^|cint 3863  (class class class)co 5820   RRcr 8732   1c1 8734    + caddc 8736   NNcn 9742
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213  ax-un 4511  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-i2m1 8801  ax-1ne0 8802  ax-rrecex 8805  ax-cnre 8806
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-recs 6384  df-rdg 6419  df-nn 9743
  Copyright terms: Public domain W3C validator