MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnul2 Unicode version

Theorem dfnul2 3432
Description: Alternate definition of the empty set. Definition 5.14 of [TakeutiZaring] p. 20. (Contributed by NM, 26-Dec-1996.)
Assertion
Ref Expression
dfnul2  |-  (/)  =  {
x  |  -.  x  =  x }

Proof of Theorem dfnul2
StepHypRef Expression
1 df-nul 3431 . . . 4  |-  (/)  =  ( _V  \  _V )
21eleq2i 2322 . . 3  |-  ( x  e.  (/)  <->  x  e.  ( _V  \  _V ) )
3 eldif 3137 . . 3  |-  ( x  e.  ( _V  \  _V )  <->  ( x  e. 
_V  /\  -.  x  e.  _V ) )
4 eqid 2258 . . . . 5  |-  x  =  x
5 pm3.24 857 . . . . 5  |-  -.  (
x  e.  _V  /\  -.  x  e.  _V )
64, 52th 232 . . . 4  |-  ( x  =  x  <->  -.  (
x  e.  _V  /\  -.  x  e.  _V ) )
76con2bii 324 . . 3  |-  ( ( x  e.  _V  /\  -.  x  e.  _V ) 
<->  -.  x  =  x )
82, 3, 73bitri 264 . 2  |-  ( x  e.  (/)  <->  -.  x  =  x )
98abbi2i 2369 1  |-  (/)  =  {
x  |  -.  x  =  x }
Colors of variables: wff set class
Syntax hints:   -. wn 5    /\ wa 360    = wceq 1619    e. wcel 1621   {cab 2244   _Vcvv 2763    \ cdif 3124   (/)c0 3430
This theorem is referenced by:  dfnul3  3433  rab0  3450  iotanul  6240  avril1  20797
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-v 2765  df-dif 3130  df-nul 3431
  Copyright terms: Public domain W3C validator