MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfom3 Unicode version

Theorem dfom3 7281
Description: The class of natural numbers omega can be defined as the smallest "inductive set," which is valid provided we assume the Axiom of Infinity. Definition 6.3 of [Eisenberg] p. 82. (Contributed by NM, 6-Aug-1994.)
Assertion
Ref Expression
dfom3  |-  om  =  |^| { x  |  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x ) }
Distinct variable group:    x, y

Proof of Theorem dfom3
StepHypRef Expression
1 0ex 4090 . . . . 5  |-  (/)  e.  _V
21elintab 3814 . . . 4  |-  ( (/)  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  <->  A. x
( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)  ->  (/)  e.  x
) )
3 simpl 445 . . . 4  |-  ( (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  -> 
(/)  e.  x )
42, 3mpgbir 1544 . . 3  |-  (/)  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x ) }
5 suceq 4394 . . . . . . . . . 10  |-  ( y  =  z  ->  suc  y  =  suc  z )
65eleq1d 2322 . . . . . . . . 9  |-  ( y  =  z  ->  ( suc  y  e.  x  <->  suc  z  e.  x ) )
76rcla4cv 2832 . . . . . . . 8  |-  ( A. y  e.  x  suc  y  e.  x  ->  ( z  e.  x  ->  suc  z  e.  x
) )
87adantl 454 . . . . . . 7  |-  ( (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  ->  ( z  e.  x  ->  suc  z  e.  x
) )
98a2i 14 . . . . . 6  |-  ( ( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)  ->  z  e.  x )  ->  (
( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  ->  suc  z  e.  x
) )
109alimi 1546 . . . . 5  |-  ( A. x ( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  ->  z  e.  x )  ->  A. x
( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)  ->  suc  z  e.  x ) )
11 vex 2743 . . . . . 6  |-  z  e. 
_V
1211elintab 3814 . . . . 5  |-  ( z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  <->  A. x
( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)  ->  z  e.  x ) )
1311sucex 4539 . . . . . 6  |-  suc  z  e.  _V
1413elintab 3814 . . . . 5  |-  ( suc  z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  <->  A. x
( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)  ->  suc  z  e.  x ) )
1510, 12, 143imtr4i 259 . . . 4  |-  ( z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  ->  suc  z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) } )
1615rgenw 2581 . . 3  |-  A. z  e.  om  ( z  e. 
|^| { x  |  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x ) }  ->  suc  z  e.  |^|
{ x  |  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x ) } )
17 peano5 4616 . . 3  |-  ( (
(/)  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  /\  A. z  e.  om  (
z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  ->  suc  z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) } ) )  ->  om  C_  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) } )
184, 16, 17mp2an 656 . 2  |-  om  C_  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }
19 peano1 4612 . . . 4  |-  (/)  e.  om
20 peano2 4613 . . . . 5  |-  ( y  e.  om  ->  suc  y  e.  om )
2120rgen 2579 . . . 4  |-  A. y  e.  om  suc  y  e. 
om
22 omex 7277 . . . . . 6  |-  om  e.  _V
23 eleq2 2317 . . . . . . . 8  |-  ( x  =  om  ->  ( (/) 
e.  x  <->  (/)  e.  om ) )
24 eleq2 2317 . . . . . . . . 9  |-  ( x  =  om  ->  ( suc  y  e.  x  <->  suc  y  e.  om )
)
2524raleqbi1dv 2705 . . . . . . . 8  |-  ( x  =  om  ->  ( A. y  e.  x  suc  y  e.  x  <->  A. y  e.  om  suc  y  e.  om )
)
2623, 25anbi12d 694 . . . . . . 7  |-  ( x  =  om  ->  (
( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  <->  (
(/)  e.  om  /\  A. y  e.  om  suc  y  e.  om ) ) )
27 eleq2 2317 . . . . . . 7  |-  ( x  =  om  ->  (
z  e.  x  <->  z  e.  om ) )
2826, 27imbi12d 313 . . . . . 6  |-  ( x  =  om  ->  (
( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)  ->  z  e.  x )  <->  ( ( (/) 
e.  om  /\  A. y  e.  om  suc  y  e. 
om )  ->  z  e.  om ) ) )
2922, 28cla4v 2825 . . . . 5  |-  ( A. x ( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  ->  z  e.  x )  ->  (
( (/)  e.  om  /\  A. y  e.  om  suc  y  e.  om )  ->  z  e.  om )
)
3012, 29sylbi 189 . . . 4  |-  ( z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  ->  (
( (/)  e.  om  /\  A. y  e.  om  suc  y  e.  om )  ->  z  e.  om )
)
3119, 21, 30mp2ani 662 . . 3  |-  ( z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  ->  z  e.  om )
3231ssriv 3126 . 2  |-  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  C_  om
3318, 32eqssi 3137 1  |-  om  =  |^| { x  |  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x ) }
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360   A.wal 1532    = wceq 1619    e. wcel 1621   {cab 2242   A.wral 2516    C_ wss 3094   (/)c0 3397   |^|cint 3803   suc csuc 4331   omcom 4593
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152  ax-un 4449  ax-inf2 7275
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-sbc 2936  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-br 3964  df-opab 4018  df-tr 4054  df-eprel 4242  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594
  Copyright terms: Public domain W3C validator