MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfom3 Unicode version

Theorem dfom3 7558
Description: The class of natural numbers omega can be defined as the smallest "inductive set," which is valid provided we assume the Axiom of Infinity. Definition 6.3 of [Eisenberg] p. 82. (Contributed by NM, 6-Aug-1994.)
Assertion
Ref Expression
dfom3  |-  om  =  |^| { x  |  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x ) }
Distinct variable group:    x, y

Proof of Theorem dfom3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 0ex 4299 . . . . 5  |-  (/)  e.  _V
21elintab 4021 . . . 4  |-  ( (/)  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  <->  A. x
( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)  ->  (/)  e.  x
) )
3 simpl 444 . . . 4  |-  ( (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  -> 
(/)  e.  x )
42, 3mpgbir 1556 . . 3  |-  (/)  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x ) }
5 suceq 4606 . . . . . . . . . 10  |-  ( y  =  z  ->  suc  y  =  suc  z )
65eleq1d 2470 . . . . . . . . 9  |-  ( y  =  z  ->  ( suc  y  e.  x  <->  suc  z  e.  x ) )
76rspccv 3009 . . . . . . . 8  |-  ( A. y  e.  x  suc  y  e.  x  ->  ( z  e.  x  ->  suc  z  e.  x
) )
87adantl 453 . . . . . . 7  |-  ( (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  ->  ( z  e.  x  ->  suc  z  e.  x
) )
98a2i 13 . . . . . 6  |-  ( ( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)  ->  z  e.  x )  ->  (
( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  ->  suc  z  e.  x
) )
109alimi 1565 . . . . 5  |-  ( A. x ( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  ->  z  e.  x )  ->  A. x
( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)  ->  suc  z  e.  x ) )
11 vex 2919 . . . . . 6  |-  z  e. 
_V
1211elintab 4021 . . . . 5  |-  ( z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  <->  A. x
( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)  ->  z  e.  x ) )
1311sucex 4750 . . . . . 6  |-  suc  z  e.  _V
1413elintab 4021 . . . . 5  |-  ( suc  z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  <->  A. x
( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)  ->  suc  z  e.  x ) )
1510, 12, 143imtr4i 258 . . . 4  |-  ( z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  ->  suc  z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) } )
1615rgenw 2733 . . 3  |-  A. z  e.  om  ( z  e. 
|^| { x  |  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x ) }  ->  suc  z  e.  |^|
{ x  |  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x ) } )
17 peano5 4827 . . 3  |-  ( (
(/)  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  /\  A. z  e.  om  (
z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  ->  suc  z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) } ) )  ->  om  C_  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) } )
184, 16, 17mp2an 654 . 2  |-  om  C_  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }
19 peano1 4823 . . . 4  |-  (/)  e.  om
20 peano2 4824 . . . . 5  |-  ( y  e.  om  ->  suc  y  e.  om )
2120rgen 2731 . . . 4  |-  A. y  e.  om  suc  y  e. 
om
22 omex 7554 . . . . . 6  |-  om  e.  _V
23 eleq2 2465 . . . . . . . 8  |-  ( x  =  om  ->  ( (/) 
e.  x  <->  (/)  e.  om ) )
24 eleq2 2465 . . . . . . . . 9  |-  ( x  =  om  ->  ( suc  y  e.  x  <->  suc  y  e.  om )
)
2524raleqbi1dv 2872 . . . . . . . 8  |-  ( x  =  om  ->  ( A. y  e.  x  suc  y  e.  x  <->  A. y  e.  om  suc  y  e.  om )
)
2623, 25anbi12d 692 . . . . . . 7  |-  ( x  =  om  ->  (
( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  <->  (
(/)  e.  om  /\  A. y  e.  om  suc  y  e.  om ) ) )
27 eleq2 2465 . . . . . . 7  |-  ( x  =  om  ->  (
z  e.  x  <->  z  e.  om ) )
2826, 27imbi12d 312 . . . . . 6  |-  ( x  =  om  ->  (
( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)  ->  z  e.  x )  <->  ( ( (/) 
e.  om  /\  A. y  e.  om  suc  y  e. 
om )  ->  z  e.  om ) ) )
2922, 28spcv 3002 . . . . 5  |-  ( A. x ( ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  ->  z  e.  x )  ->  (
( (/)  e.  om  /\  A. y  e.  om  suc  y  e.  om )  ->  z  e.  om )
)
3012, 29sylbi 188 . . . 4  |-  ( z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  ->  (
( (/)  e.  om  /\  A. y  e.  om  suc  y  e.  om )  ->  z  e.  om )
)
3119, 21, 30mp2ani 660 . . 3  |-  ( z  e.  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  ->  z  e.  om )
3231ssriv 3312 . 2  |-  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  C_  om
3318, 32eqssi 3324 1  |-  om  =  |^| { x  |  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x ) }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   A.wal 1546    = wceq 1649    e. wcel 1721   {cab 2390   A.wral 2666    C_ wss 3280   (/)c0 3588   |^|cint 4010   suc csuc 4543   omcom 4804
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363  ax-un 4660  ax-inf2 7552
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-br 4173  df-opab 4227  df-tr 4263  df-eprel 4454  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805
  Copyright terms: Public domain W3C validator