Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2lem9 Unicode version

Theorem dfon2lem9 25402
Description: Lemma for dfon2 25403. A class of new ordinals is well-founded by  _E. (Contributed by Scott Fenton, 3-Mar-2011.)
Assertion
Ref Expression
dfon2lem9  |-  ( A. x  e.  A  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  _E  Fr  A )
Distinct variable group:    x, A, y

Proof of Theorem dfon2lem9
Dummy variables  z  w  t  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssralv 3399 . . . . 5  |-  ( z 
C_  A  ->  ( A. x  e.  A  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  A. x  e.  z  A. y
( ( y  C.  x  /\  Tr  y )  ->  y  e.  x
) ) )
2 dfon2lem8 25401 . . . . . . . 8  |-  ( ( z  =/=  (/)  /\  A. x  e.  z  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x ) )  -> 
( A. u ( ( u  C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z )  /\  |^| z  e.  z )
)
32simprd 450 . . . . . . 7  |-  ( ( z  =/=  (/)  /\  A. x  e.  z  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x ) )  ->  |^| z  e.  z
)
4 intss1 4057 . . . . . . . . 9  |-  ( t  e.  z  ->  |^| z  C_  t )
52simpld 446 . . . . . . . . . 10  |-  ( ( z  =/=  (/)  /\  A. x  e.  z  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x ) )  ->  A. u ( ( u 
C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z ) )
6 intex 4348 . . . . . . . . . . 11  |-  ( z  =/=  (/)  <->  |^| z  e.  _V )
7 dfon2lem3 25396 . . . . . . . . . . . . . . . . 17  |-  ( |^| z  e.  _V  ->  ( A. u ( ( u  C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z )  ->  ( Tr  |^| z  /\  A. x  e. 
|^| z  -.  x  e.  x ) ) )
87imp 419 . . . . . . . . . . . . . . . 16  |-  ( (
|^| z  e.  _V  /\ 
A. u ( ( u  C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z ) )  ->  ( Tr  |^| z  /\  A. x  e.  |^| z  -.  x  e.  x ) )
98simprd 450 . . . . . . . . . . . . . . 15  |-  ( (
|^| z  e.  _V  /\ 
A. u ( ( u  C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z ) )  ->  A. x  e.  |^| z  -.  x  e.  x )
10 untelirr 25145 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  |^| z  -.  x  e.  x  ->  -.  |^| z  e.  |^| z )
119, 10syl 16 . . . . . . . . . . . . . 14  |-  ( (
|^| z  e.  _V  /\ 
A. u ( ( u  C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z ) )  ->  -.  |^| z  e.  |^| z )
12 eleq1 2495 . . . . . . . . . . . . . . 15  |-  ( |^| z  =  t  ->  (
|^| z  e.  |^| z 
<->  t  e.  |^| z
) )
1312notbid 286 . . . . . . . . . . . . . 14  |-  ( |^| z  =  t  ->  ( -.  |^| z  e.  |^| z 
<->  -.  t  e.  |^| z ) )
1411, 13syl5ibcom 212 . . . . . . . . . . . . 13  |-  ( (
|^| z  e.  _V  /\ 
A. u ( ( u  C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z ) )  ->  ( |^| z  =  t  ->  -.  t  e.  |^| z
) )
1514a1dd 44 . . . . . . . . . . . 12  |-  ( (
|^| z  e.  _V  /\ 
A. u ( ( u  C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z ) )  ->  ( |^| z  =  t  ->  (
|^| z  C_  t  ->  -.  t  e.  |^| z ) ) )
168simpld 446 . . . . . . . . . . . . . . . . 17  |-  ( (
|^| z  e.  _V  /\ 
A. u ( ( u  C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z ) )  ->  Tr  |^| z
)
17 trss 4303 . . . . . . . . . . . . . . . . 17  |-  ( Tr 
|^| z  ->  (
t  e.  |^| z  ->  t  C_  |^| z ) )
1816, 17syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
|^| z  e.  _V  /\ 
A. u ( ( u  C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z ) )  ->  ( t  e.  |^| z  ->  t  C_ 
|^| z ) )
19 eqss 3355 . . . . . . . . . . . . . . . . 17  |-  ( |^| z  =  t  <->  ( |^| z  C_  t  /\  t  C_ 
|^| z ) )
2019simplbi2com 1383 . . . . . . . . . . . . . . . 16  |-  ( t 
C_  |^| z  ->  ( |^| z  C_  t  ->  |^| z  =  t
) )
2118, 20syl6 31 . . . . . . . . . . . . . . 15  |-  ( (
|^| z  e.  _V  /\ 
A. u ( ( u  C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z ) )  ->  ( t  e.  |^| z  ->  ( |^| z  C_  t  ->  |^| z  =  t
) ) )
2221com23 74 . . . . . . . . . . . . . 14  |-  ( (
|^| z  e.  _V  /\ 
A. u ( ( u  C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z ) )  ->  ( |^| z  C_  t  ->  (
t  e.  |^| z  ->  |^| z  =  t ) ) )
23 con3 128 . . . . . . . . . . . . . 14  |-  ( ( t  e.  |^| z  ->  |^| z  =  t )  ->  ( -.  |^| z  =  t  ->  -.  t  e.  |^| z
) )
2422, 23syl6 31 . . . . . . . . . . . . 13  |-  ( (
|^| z  e.  _V  /\ 
A. u ( ( u  C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z ) )  ->  ( |^| z  C_  t  ->  ( -.  |^| z  =  t  ->  -.  t  e.  |^| z ) ) )
2524com23 74 . . . . . . . . . . . 12  |-  ( (
|^| z  e.  _V  /\ 
A. u ( ( u  C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z ) )  ->  ( -.  |^| z  =  t  -> 
( |^| z  C_  t  ->  -.  t  e.  |^| z ) ) )
2615, 25pm2.61d 152 . . . . . . . . . . 11  |-  ( (
|^| z  e.  _V  /\ 
A. u ( ( u  C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z ) )  ->  ( |^| z  C_  t  ->  -.  t  e.  |^| z ) )
276, 26sylanb 459 . . . . . . . . . 10  |-  ( ( z  =/=  (/)  /\  A. u ( ( u 
C.  |^| z  /\  Tr  u )  ->  u  e.  |^| z ) )  ->  ( |^| z  C_  t  ->  -.  t  e.  |^| z ) )
285, 27syldan 457 . . . . . . . . 9  |-  ( ( z  =/=  (/)  /\  A. x  e.  z  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x ) )  -> 
( |^| z  C_  t  ->  -.  t  e.  |^| z ) )
294, 28syl5 30 . . . . . . . 8  |-  ( ( z  =/=  (/)  /\  A. x  e.  z  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x ) )  -> 
( t  e.  z  ->  -.  t  e.  |^| z ) )
3029ralrimiv 2780 . . . . . . 7  |-  ( ( z  =/=  (/)  /\  A. x  e.  z  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x ) )  ->  A. t  e.  z  -.  t  e.  |^| z
)
31 eleq2 2496 . . . . . . . . . 10  |-  ( w  =  |^| z  -> 
( t  e.  w  <->  t  e.  |^| z ) )
3231notbid 286 . . . . . . . . 9  |-  ( w  =  |^| z  -> 
( -.  t  e.  w  <->  -.  t  e.  |^| z ) )
3332ralbidv 2717 . . . . . . . 8  |-  ( w  =  |^| z  -> 
( A. t  e.  z  -.  t  e.  w  <->  A. t  e.  z  -.  t  e.  |^| z ) )
3433rspcev 3044 . . . . . . 7  |-  ( (
|^| z  e.  z  /\  A. t  e.  z  -.  t  e. 
|^| z )  ->  E. w  e.  z  A. t  e.  z  -.  t  e.  w
)
353, 30, 34syl2anc 643 . . . . . 6  |-  ( ( z  =/=  (/)  /\  A. x  e.  z  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x ) )  ->  E. w  e.  z  A. t  e.  z  -.  t  e.  w
)
3635expcom 425 . . . . 5  |-  ( A. x  e.  z  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  (
z  =/=  (/)  ->  E. w  e.  z  A. t  e.  z  -.  t  e.  w ) )
371, 36syl6com 33 . . . 4  |-  ( A. x  e.  A  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  (
z  C_  A  ->  ( z  =/=  (/)  ->  E. w  e.  z  A. t  e.  z  -.  t  e.  w ) ) )
3837imp3a 421 . . 3  |-  ( A. x  e.  A  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  (
( z  C_  A  /\  z  =/=  (/) )  ->  E. w  e.  z  A. t  e.  z  -.  t  e.  w
) )
3938alrimiv 1641 . 2  |-  ( A. x  e.  A  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  A. z
( ( z  C_  A  /\  z  =/=  (/) )  ->  E. w  e.  z  A. t  e.  z  -.  t  e.  w
) )
40 df-fr 4533 . . 3  |-  (  _E  Fr  A  <->  A. z
( ( z  C_  A  /\  z  =/=  (/) )  ->  E. w  e.  z  A. t  e.  z  -.  t  _E  w
) )
41 epel 4489 . . . . . . . 8  |-  ( t  _E  w  <->  t  e.  w )
4241notbii 288 . . . . . . 7  |-  ( -.  t  _E  w  <->  -.  t  e.  w )
4342ralbii 2721 . . . . . 6  |-  ( A. t  e.  z  -.  t  _E  w  <->  A. t  e.  z  -.  t  e.  w )
4443rexbii 2722 . . . . 5  |-  ( E. w  e.  z  A. t  e.  z  -.  t  _E  w  <->  E. w  e.  z  A. t  e.  z  -.  t  e.  w )
4544imbi2i 304 . . . 4  |-  ( ( ( z  C_  A  /\  z  =/=  (/) )  ->  E. w  e.  z  A. t  e.  z  -.  t  _E  w
)  <->  ( ( z 
C_  A  /\  z  =/=  (/) )  ->  E. w  e.  z  A. t  e.  z  -.  t  e.  w ) )
4645albii 1575 . . 3  |-  ( A. z ( ( z 
C_  A  /\  z  =/=  (/) )  ->  E. w  e.  z  A. t  e.  z  -.  t  _E  w )  <->  A. z
( ( z  C_  A  /\  z  =/=  (/) )  ->  E. w  e.  z  A. t  e.  z  -.  t  e.  w
) )
4740, 46bitri 241 . 2  |-  (  _E  Fr  A  <->  A. z
( ( z  C_  A  /\  z  =/=  (/) )  ->  E. w  e.  z  A. t  e.  z  -.  t  e.  w
) )
4839, 47sylibr 204 1  |-  ( A. x  e.  A  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  _E  Fr  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359   A.wal 1549    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698   _Vcvv 2948    C_ wss 3312    C. wpss 3313   (/)c0 3620   |^|cint 4042   class class class wbr 4204   Tr wtr 4294    _E cep 4484    Fr wfr 4530
This theorem is referenced by:  dfon2  25403
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-tr 4295  df-eprel 4486  df-fr 4533  df-suc 4579
  Copyright terms: Public domain W3C validator