MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfpr2 Unicode version

Theorem dfpr2 3616
Description: Alternate definition of unordered pair. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.)
Assertion
Ref Expression
dfpr2  |-  { A ,  B }  =  {
x  |  ( x  =  A  \/  x  =  B ) }
Distinct variable groups:    x, A    x, B

Proof of Theorem dfpr2
StepHypRef Expression
1 df-pr 3607 . 2  |-  { A ,  B }  =  ( { A }  u.  { B } )
2 elun 3277 . . . 4  |-  ( x  e.  ( { A }  u.  { B } )  <->  ( x  e.  { A }  \/  x  e.  { B } ) )
3 elsn 3615 . . . . 5  |-  ( x  e.  { A }  <->  x  =  A )
4 elsn 3615 . . . . 5  |-  ( x  e.  { B }  <->  x  =  B )
53, 4orbi12i 509 . . . 4  |-  ( ( x  e.  { A }  \/  x  e.  { B } )  <->  ( x  =  A  \/  x  =  B ) )
62, 5bitri 242 . . 3  |-  ( x  e.  ( { A }  u.  { B } )  <->  ( x  =  A  \/  x  =  B ) )
76abbi2i 2367 . 2  |-  ( { A }  u.  { B } )  =  {
x  |  ( x  =  A  \/  x  =  B ) }
81, 7eqtri 2276 1  |-  { A ,  B }  =  {
x  |  ( x  =  A  \/  x  =  B ) }
Colors of variables: wff set class
Syntax hints:    \/ wo 359    = wceq 1619    e. wcel 1621   {cab 2242    u. cun 3111   {csn 3600   {cpr 3601
This theorem is referenced by:  elprg  3617  nfpr  3640  pwpw0  3723  pwsn  3781  pwsnALT  3782  zfpair  4170  grothprimlem  8409
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-v 2759  df-un 3118  df-sn 3606  df-pr 3607
  Copyright terms: Public domain W3C validator