Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfsb7 Structured version   Unicode version

Theorem dfsb7 2205
 Description: An alternate definition of proper substitution df-sb 1661. By introducing a dummy variable in the definiens, we are able to eliminate any distinct variable restrictions among the variables , , and of the definiendum. No distinct variable conflicts arise because effectively insulates from . To achieve this, we use a chain of two substitutions in the form of sb5 2183, first for then for . Compare Definition 2.1'' of [Quine] p. 17, which is obtained from this theorem by applying df-clab 2430. Theorem sb7h 2204 provides a version where and don't have to be distinct. (Contributed by NM, 28-Jan-2004.)
Assertion
Ref Expression
dfsb7
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)

Proof of Theorem dfsb7
StepHypRef Expression
1 nfv 1631 . 2
21sb7f 2203 1
 Colors of variables: wff set class Syntax hints:   wb 178   wa 360  wex 1551  wsb 1660 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661
 Copyright terms: Public domain W3C validator