MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfsdom2 Unicode version

Theorem dfsdom2 7197
Description: Alternate definition of strict dominance. Compare Definition 3 of [Suppes] p. 97. (Contributed by NM, 31-Mar-1998.)
Assertion
Ref Expression
dfsdom2  |-  ~<  =  (  ~<_  \  `'  ~<_  )

Proof of Theorem dfsdom2
StepHypRef Expression
1 df-sdom 7079 . 2  |-  ~<  =  (  ~<_  \  ~~  )
2 sbthcl 7196 . . 3  |-  ~~  =  (  ~<_  i^i  `'  ~<_  )
32difeq2i 3430 . 2  |-  (  ~<_  \  ~~  )  =  (  ~<_  \  (  ~<_  i^i  `'  ~<_  ) )
4 difin 3546 . 2  |-  (  ~<_  \ 
(  ~<_  i^i  `'  ~<_  ) )  =  (  ~<_  \  `'  ~<_  )
51, 3, 43eqtri 2436 1  |-  ~<  =  (  ~<_  \  `'  ~<_  )
Colors of variables: wff set class
Syntax hints:    = wceq 1649    \ cdif 3285    i^i cin 3287   `'ccnv 4844    ~~ cen 7073    ~<_ cdom 7074    ~< csdm 7075
This theorem is referenced by:  brsdom2  7198
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-br 4181  df-opab 4235  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-er 6872  df-en 7077  df-dom 7078  df-sdom 7079
  Copyright terms: Public domain W3C validator