Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfso2 Structured version   Unicode version

Theorem dfso2 25369
Description: Quantifier free definition of a strict order. (Contributed by Scott Fenton, 22-Feb-2013.)
Assertion
Ref Expression
dfso2  |-  ( R  Or  A  <->  ( R  Po  A  /\  ( A  X.  A )  C_  ( R  u.  (  _I  u.  `' R ) ) ) )

Proof of Theorem dfso2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-so 4496 . 2  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) ) )
2 opelxp 4900 . . . . . 6  |-  ( <.
x ,  y >.  e.  ( A  X.  A
)  <->  ( x  e.  A  /\  y  e.  A ) )
3 brun 4250 . . . . . . . . . 10  |-  ( x (  _I  u.  `' R ) y  <->  ( x  _I  y  \/  x `' R y ) )
4 vex 2951 . . . . . . . . . . . 12  |-  y  e. 
_V
54ideq 5017 . . . . . . . . . . 11  |-  ( x  _I  y  <->  x  =  y )
6 vex 2951 . . . . . . . . . . . 12  |-  x  e. 
_V
76, 4brcnv 5047 . . . . . . . . . . 11  |-  ( x `' R y  <->  y R x )
85, 7orbi12i 508 . . . . . . . . . 10  |-  ( ( x  _I  y  \/  x `' R y )  <->  ( x  =  y  \/  y R x ) )
93, 8bitr2i 242 . . . . . . . . 9  |-  ( ( x  =  y  \/  y R x )  <-> 
x (  _I  u.  `' R ) y )
109orbi2i 506 . . . . . . . 8  |-  ( ( x R y  \/  ( x  =  y  \/  y R x ) )  <->  ( x R y  \/  x
(  _I  u.  `' R ) y ) )
11 3orass 939 . . . . . . . 8  |-  ( ( x R y  \/  x  =  y  \/  y R x )  <-> 
( x R y  \/  ( x  =  y  \/  y R x ) ) )
12 brun 4250 . . . . . . . 8  |-  ( x ( R  u.  (  _I  u.  `' R ) ) y  <->  ( x R y  \/  x
(  _I  u.  `' R ) y ) )
1310, 11, 123bitr4i 269 . . . . . . 7  |-  ( ( x R y  \/  x  =  y  \/  y R x )  <-> 
x ( R  u.  (  _I  u.  `' R ) ) y )
14 df-br 4205 . . . . . . 7  |-  ( x ( R  u.  (  _I  u.  `' R ) ) y  <->  <. x ,  y >.  e.  ( R  u.  (  _I  u.  `' R ) ) )
1513, 14bitr2i 242 . . . . . 6  |-  ( <.
x ,  y >.  e.  ( R  u.  (  _I  u.  `' R ) )  <->  ( x R y  \/  x  =  y  \/  y R x ) )
162, 15imbi12i 317 . . . . 5  |-  ( (
<. x ,  y >.  e.  ( A  X.  A
)  ->  <. x ,  y >.  e.  ( R  u.  (  _I  u.  `' R ) ) )  <-> 
( ( x  e.  A  /\  y  e.  A )  ->  (
x R y  \/  x  =  y  \/  y R x ) ) )
17162albii 1576 . . . 4  |-  ( A. x A. y ( <.
x ,  y >.  e.  ( A  X.  A
)  ->  <. x ,  y >.  e.  ( R  u.  (  _I  u.  `' R ) ) )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  A
)  ->  ( x R y  \/  x  =  y  \/  y R x ) ) )
18 relxp 4975 . . . . 5  |-  Rel  ( A  X.  A )
19 ssrel 4956 . . . . 5  |-  ( Rel  ( A  X.  A
)  ->  ( ( A  X.  A )  C_  ( R  u.  (  _I  u.  `' R ) )  <->  A. x A. y
( <. x ,  y
>.  e.  ( A  X.  A )  ->  <. x ,  y >.  e.  ( R  u.  (  _I  u.  `' R ) ) ) ) )
2018, 19ax-mp 8 . . . 4  |-  ( ( A  X.  A ) 
C_  ( R  u.  (  _I  u.  `' R ) )  <->  A. x A. y ( <. x ,  y >.  e.  ( A  X.  A )  ->  <. x ,  y
>.  e.  ( R  u.  (  _I  u.  `' R ) ) ) )
21 r2al 2734 . . . 4  |-  ( A. x  e.  A  A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  A
)  ->  ( x R y  \/  x  =  y  \/  y R x ) ) )
2217, 20, 213bitr4i 269 . . 3  |-  ( ( A  X.  A ) 
C_  ( R  u.  (  _I  u.  `' R ) )  <->  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )
2322anbi2i 676 . 2  |-  ( ( R  Po  A  /\  ( A  X.  A
)  C_  ( R  u.  (  _I  u.  `' R ) ) )  <-> 
( R  Po  A  /\  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) ) )
241, 23bitr4i 244 1  |-  ( R  Or  A  <->  ( R  Po  A  /\  ( A  X.  A )  C_  ( R  u.  (  _I  u.  `' R ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    \/ w3o 935   A.wal 1549    e. wcel 1725   A.wral 2697    u. cun 3310    C_ wss 3312   <.cop 3809   class class class wbr 4204    _I cid 4485    Po wpo 4493    Or wor 4494    X. cxp 4868   `'ccnv 4869   Rel wrel 4875
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-id 4490  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878
  Copyright terms: Public domain W3C validator