MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftp2 Unicode version

Theorem dftp2 3681
Description: Alternate definition of unordered triple of classes. Special case of Definition 5.3 of [TakeutiZaring] p. 16. (Contributed by NM, 8-Apr-1994.)
Assertion
Ref Expression
dftp2  |-  { A ,  B ,  C }  =  { x  |  ( x  =  A  \/  x  =  B  \/  x  =  C ) }
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem dftp2
StepHypRef Expression
1 vex 2793 . . 3  |-  x  e. 
_V
21eltp 3680 . 2  |-  ( x  e.  { A ,  B ,  C }  <->  ( x  =  A  \/  x  =  B  \/  x  =  C )
)
32abbi2i 2396 1  |-  { A ,  B ,  C }  =  { x  |  ( x  =  A  \/  x  =  B  \/  x  =  C ) }
Colors of variables: wff set class
Syntax hints:    \/ w3o 933    = wceq 1625   {cab 2271   {ctp 3644
This theorem is referenced by:  tprot  3724  tpid3g  3743  en3lplem2  7419  tpid3gVD  28691  en3lplem2VD  28693
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-v 2792  df-un 3159  df-sn 3648  df-pr 3649  df-tp 3650
  Copyright terms: Public domain W3C validator