Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftp2 Structured version   Unicode version

Theorem dftp2 3846
 Description: Alternate definition of unordered triple of classes. Special case of Definition 5.3 of [TakeutiZaring] p. 16. (Contributed by NM, 8-Apr-1994.)
Assertion
Ref Expression
dftp2
Distinct variable groups:   ,   ,   ,

Proof of Theorem dftp2
StepHypRef Expression
1 vex 2951 . . 3
21eltp 3845 . 2
32abbi2i 2546 1
 Colors of variables: wff set class Syntax hints:   w3o 935   wceq 1652  cab 2421  ctp 3808 This theorem is referenced by:  tprot  3891  tpid3g  3911  en3lplem2  7663  tpid3gVD  28891  en3lplem2VD  28893 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950  df-un 3317  df-sn 3812  df-pr 3813  df-tp 3814
 Copyright terms: Public domain W3C validator