MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftpos4 Unicode version

Theorem dftpos4 6253
Description: Alternate definition of tpos. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
dftpos4  |- tpos  F  =  ( F  o.  (
x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) )
Distinct variable group:    x, F

Proof of Theorem dftpos4
Dummy variables  y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-tpos 6234 . . 3  |- tpos  F  =  ( F  o.  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )
2 relcnv 5051 . . . . . . 7  |-  Rel  `' dom  F
3 df-rel 4696 . . . . . . 7  |-  ( Rel  `' dom  F  <->  `' dom  F 
C_  ( _V  X.  _V ) )
42, 3mpbi 199 . . . . . 6  |-  `' dom  F 
C_  ( _V  X.  _V )
5 unss1 3344 . . . . . 6  |-  ( `' dom  F  C_  ( _V  X.  _V )  -> 
( `' dom  F  u.  { (/) } )  C_  ( ( _V  X.  _V )  u.  { (/) } ) )
6 resmpt 5000 . . . . . 6  |-  ( ( `' dom  F  u.  { (/)
} )  C_  (
( _V  X.  _V )  u.  { (/) } )  ->  ( ( x  e.  ( ( _V 
X.  _V )  u.  { (/)
} )  |->  U. `' { x } )  |`  ( `' dom  F  u.  { (/) } ) )  =  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) )
74, 5, 6mp2b 9 . . . . 5  |-  ( ( x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } )  |`  ( `' dom  F  u.  { (/) } ) )  =  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } )
8 resss 4979 . . . . 5  |-  ( ( x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } )  |`  ( `' dom  F  u.  { (/) } ) ) 
C_  ( x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } )
97, 8eqsstr3i 3209 . . . 4  |-  ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } )  C_  (
x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } )
10 coss2 4840 . . . 4  |-  ( ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) 
C_  ( x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } )  ->  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) )  C_  ( F  o.  ( x  e.  ( ( _V  X.  _V )  u.  { (/) } ) 
|->  U. `' { x } ) ) )
119, 10ax-mp 8 . . 3  |-  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) )  C_  ( F  o.  ( x  e.  ( ( _V  X.  _V )  u.  { (/) } ) 
|->  U. `' { x } ) )
121, 11eqsstri 3208 . 2  |- tpos  F  C_  ( F  o.  (
x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) )
13 relco 5171 . . 3  |-  Rel  ( F  o.  ( x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) )
14 vex 2791 . . . . 5  |-  y  e. 
_V
15 vex 2791 . . . . 5  |-  z  e. 
_V
1614, 15opelco 4853 . . . 4  |-  ( <.
y ,  z >.  e.  ( F  o.  (
x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) )  <->  E. w ( y ( x  e.  ( ( _V  X.  _V )  u.  { (/) } ) 
|->  U. `' { x } ) w  /\  w F z ) )
17 vex 2791 . . . . . . . . 9  |-  w  e. 
_V
18 eleq1 2343 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  e.  ( ( _V  X.  _V )  u.  { (/) } )  <->  y  e.  ( ( _V  X.  _V )  u.  { (/) } ) ) )
19 sneq 3651 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  { x }  =  { y } )
2019cnveqd 4857 . . . . . . . . . . . 12  |-  ( x  =  y  ->  `' { x }  =  `' { y } )
2120unieqd 3838 . . . . . . . . . . 11  |-  ( x  =  y  ->  U. `' { x }  =  U. `' { y } )
2221eqeq2d 2294 . . . . . . . . . 10  |-  ( x  =  y  ->  (
z  =  U. `' { x }  <->  z  =  U. `' { y } ) )
2318, 22anbi12d 691 . . . . . . . . 9  |-  ( x  =  y  ->  (
( x  e.  ( ( _V  X.  _V )  u.  { (/) } )  /\  z  =  U. `' { x } )  <-> 
( y  e.  ( ( _V  X.  _V )  u.  { (/) } )  /\  z  =  U. `' { y } ) ) )
24 eqeq1 2289 . . . . . . . . . 10  |-  ( z  =  w  ->  (
z  =  U. `' { y }  <->  w  =  U. `' { y } ) )
2524anbi2d 684 . . . . . . . . 9  |-  ( z  =  w  ->  (
( y  e.  ( ( _V  X.  _V )  u.  { (/) } )  /\  z  =  U. `' { y } )  <-> 
( y  e.  ( ( _V  X.  _V )  u.  { (/) } )  /\  w  =  U. `' { y } ) ) )
26 df-mpt 4079 . . . . . . . . 9  |-  ( x  e.  ( ( _V 
X.  _V )  u.  { (/)
} )  |->  U. `' { x } )  =  { <. x ,  z >.  |  ( x  e.  ( ( _V  X.  _V )  u.  { (/) } )  /\  z  =  U. `' {
x } ) }
2714, 17, 23, 25, 26brab 4287 . . . . . . . 8  |-  ( y ( x  e.  ( ( _V  X.  _V )  u.  { (/) } ) 
|->  U. `' { x } ) w  <->  ( y  e.  ( ( _V  X.  _V )  u.  { (/) } )  /\  w  = 
U. `' { y } ) )
28 simplr 731 . . . . . . . . . . . 12  |-  ( ( ( y  e.  ( ( _V  X.  _V )  u.  { (/) } )  /\  w  =  U. `' { y } )  /\  w F z )  ->  w  =  U. `' { y } )
2917, 15breldm 4883 . . . . . . . . . . . . 13  |-  ( w F z  ->  w  e.  dom  F )
3029adantl 452 . . . . . . . . . . . 12  |-  ( ( ( y  e.  ( ( _V  X.  _V )  u.  { (/) } )  /\  w  =  U. `' { y } )  /\  w F z )  ->  w  e.  dom  F )
3128, 30eqeltrrd 2358 . . . . . . . . . . 11  |-  ( ( ( y  e.  ( ( _V  X.  _V )  u.  { (/) } )  /\  w  =  U. `' { y } )  /\  w F z )  ->  U. `' {
y }  e.  dom  F )
32 elvv 4748 . . . . . . . . . . . . . 14  |-  ( y  e.  ( _V  X.  _V )  <->  E. z E. w  y  =  <. z ,  w >. )
33 opswap 5159 . . . . . . . . . . . . . . . . . 18  |-  U. `' { <. z ,  w >. }  =  <. w ,  z >.
3433eleq1i 2346 . . . . . . . . . . . . . . . . 17  |-  ( U. `' { <. z ,  w >. }  e.  dom  F  <->  <.
w ,  z >.  e.  dom  F )
3515, 17opelcnv 4863 . . . . . . . . . . . . . . . . 17  |-  ( <.
z ,  w >.  e.  `' dom  F  <->  <. w ,  z >.  e.  dom  F )
3634, 35bitr4i 243 . . . . . . . . . . . . . . . 16  |-  ( U. `' { <. z ,  w >. }  e.  dom  F  <->  <.
z ,  w >.  e.  `' dom  F )
37 sneq 3651 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  <. z ,  w >.  ->  { y }  =  { <. z ,  w >. } )
3837cnveqd 4857 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  <. z ,  w >.  ->  `' { y }  =  `' { <. z ,  w >. } )
3938unieqd 3838 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  <. z ,  w >.  ->  U. `' { y }  =  U. `' { <. z ,  w >. } )
4039eleq1d 2349 . . . . . . . . . . . . . . . . 17  |-  ( y  =  <. z ,  w >.  ->  ( U. `' { y }  e.  dom  F  <->  U. `' { <. z ,  w >. }  e.  dom  F ) )
41 eleq1 2343 . . . . . . . . . . . . . . . . 17  |-  ( y  =  <. z ,  w >.  ->  ( y  e.  `' dom  F  <->  <. z ,  w >.  e.  `' dom  F ) )
4240, 41bibi12d 312 . . . . . . . . . . . . . . . 16  |-  ( y  =  <. z ,  w >.  ->  ( ( U. `' { y }  e.  dom  F  <->  y  e.  `' dom  F )  <->  ( U. `' { <. z ,  w >. }  e.  dom  F  <->  <.
z ,  w >.  e.  `' dom  F ) ) )
4336, 42mpbiri 224 . . . . . . . . . . . . . . 15  |-  ( y  =  <. z ,  w >.  ->  ( U. `' { y }  e.  dom  F  <->  y  e.  `' dom  F ) )
4443exlimivv 1667 . . . . . . . . . . . . . 14  |-  ( E. z E. w  y  =  <. z ,  w >.  ->  ( U. `' { y }  e.  dom  F  <->  y  e.  `' dom  F ) )
4532, 44sylbi 187 . . . . . . . . . . . . 13  |-  ( y  e.  ( _V  X.  _V )  ->  ( U. `' { y }  e.  dom  F  <->  y  e.  `' dom  F ) )
4645biimpcd 215 . . . . . . . . . . . 12  |-  ( U. `' { y }  e.  dom  F  ->  ( y  e.  ( _V  X.  _V )  ->  y  e.  `' dom  F ) )
47 elun1 3342 . . . . . . . . . . . 12  |-  ( y  e.  `' dom  F  ->  y  e.  ( `' dom  F  u.  { (/)
} ) )
4846, 47syl6 29 . . . . . . . . . . 11  |-  ( U. `' { y }  e.  dom  F  ->  ( y  e.  ( _V  X.  _V )  ->  y  e.  ( `' dom  F  u.  { (/)
} ) ) )
4931, 48syl 15 . . . . . . . . . 10  |-  ( ( ( y  e.  ( ( _V  X.  _V )  u.  { (/) } )  /\  w  =  U. `' { y } )  /\  w F z )  ->  ( y  e.  ( _V  X.  _V )  ->  y  e.  ( `' dom  F  u.  { (/)
} ) ) )
50 elun2 3343 . . . . . . . . . . 11  |-  ( y  e.  { (/) }  ->  y  e.  ( `' dom  F  u.  { (/) } ) )
5150a1i 10 . . . . . . . . . 10  |-  ( ( ( y  e.  ( ( _V  X.  _V )  u.  { (/) } )  /\  w  =  U. `' { y } )  /\  w F z )  ->  ( y  e.  { (/) }  ->  y  e.  ( `' dom  F  u.  { (/) } ) ) )
52 simpll 730 . . . . . . . . . . 11  |-  ( ( ( y  e.  ( ( _V  X.  _V )  u.  { (/) } )  /\  w  =  U. `' { y } )  /\  w F z )  ->  y  e.  ( ( _V  X.  _V )  u.  { (/) } ) )
53 elun 3316 . . . . . . . . . . 11  |-  ( y  e.  ( ( _V 
X.  _V )  u.  { (/)
} )  <->  ( y  e.  ( _V  X.  _V )  \/  y  e.  {
(/) } ) )
5452, 53sylib 188 . . . . . . . . . 10  |-  ( ( ( y  e.  ( ( _V  X.  _V )  u.  { (/) } )  /\  w  =  U. `' { y } )  /\  w F z )  ->  ( y  e.  ( _V  X.  _V )  \/  y  e.  {
(/) } ) )
5549, 51, 54mpjaod 370 . . . . . . . . 9  |-  ( ( ( y  e.  ( ( _V  X.  _V )  u.  { (/) } )  /\  w  =  U. `' { y } )  /\  w F z )  ->  y  e.  ( `' dom  F  u.  { (/)
} ) )
56 simpr 447 . . . . . . . . . 10  |-  ( ( ( y  e.  ( ( _V  X.  _V )  u.  { (/) } )  /\  w  =  U. `' { y } )  /\  w F z )  ->  w F
z )
5728, 56eqbrtrrd 4045 . . . . . . . . 9  |-  ( ( ( y  e.  ( ( _V  X.  _V )  u.  { (/) } )  /\  w  =  U. `' { y } )  /\  w F z )  ->  U. `' {
y } F z )
5855, 57jca 518 . . . . . . . 8  |-  ( ( ( y  e.  ( ( _V  X.  _V )  u.  { (/) } )  /\  w  =  U. `' { y } )  /\  w F z )  ->  ( y  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { y } F
z ) )
5927, 58sylanb 458 . . . . . . 7  |-  ( ( y ( x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) w  /\  w F z )  -> 
( y  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { y } F
z ) )
60 brtpos2 6240 . . . . . . . 8  |-  ( z  e.  _V  ->  (
ytpos  F z  <->  ( y  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { y } F
z ) ) )
6115, 60ax-mp 8 . . . . . . 7  |-  ( ytpos 
F z  <->  ( y  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { y } F
z ) )
6259, 61sylibr 203 . . . . . 6  |-  ( ( y ( x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) w  /\  w F z )  -> 
ytpos  F z )
63 df-br 4024 . . . . . 6  |-  ( ytpos 
F z  <->  <. y ,  z >.  e. tpos  F )
6462, 63sylib 188 . . . . 5  |-  ( ( y ( x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) w  /\  w F z )  ->  <. y ,  z >.  e. tpos  F )
6564exlimiv 1666 . . . 4  |-  ( E. w ( y ( x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) w  /\  w F z )  ->  <. y ,  z >.  e. tpos  F
)
6616, 65sylbi 187 . . 3  |-  ( <.
y ,  z >.  e.  ( F  o.  (
x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) )  ->  <. y ,  z >.  e. tpos  F )
6713, 66relssi 4778 . 2  |-  ( F  o.  ( x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) )  C_ tpos  F
6812, 67eqssi 3195 1  |- tpos  F  =  ( F  o.  (
x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   _Vcvv 2788    u. cun 3150    C_ wss 3152   (/)c0 3455   {csn 3640   <.cop 3643   U.cuni 3827   class class class wbr 4023    e. cmpt 4077    X. cxp 4687   `'ccnv 4688   dom cdm 4689    |` cres 4691    o. ccom 4693   Rel wrel 4694  tpos ctpos 6233
This theorem is referenced by:  tposco  6265  nftpos  6269
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-fv 5263  df-tpos 6234
  Copyright terms: Public domain W3C validator