MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftr2 Unicode version

Theorem dftr2 4116
Description: An alternate way of defining a transitive class. Exercise 7 of [TakeutiZaring] p. 40. (Contributed by NM, 24-Apr-1994.)
Assertion
Ref Expression
dftr2  |-  ( Tr  A  <->  A. x A. y
( ( x  e.  y  /\  y  e.  A )  ->  x  e.  A ) )
Distinct variable group:    x, y, A

Proof of Theorem dftr2
StepHypRef Expression
1 dfss2 3170 . 2  |-  ( U. A  C_  A  <->  A. x
( x  e.  U. A  ->  x  e.  A
) )
2 df-tr 4115 . 2  |-  ( Tr  A  <->  U. A  C_  A
)
3 19.23v 1834 . . . 4  |-  ( A. y ( ( x  e.  y  /\  y  e.  A )  ->  x  e.  A )  <->  ( E. y ( x  e.  y  /\  y  e.  A )  ->  x  e.  A ) )
4 eluni 3831 . . . . 5  |-  ( x  e.  U. A  <->  E. y
( x  e.  y  /\  y  e.  A
) )
54imbi1i 315 . . . 4  |-  ( ( x  e.  U. A  ->  x  e.  A )  <-> 
( E. y ( x  e.  y  /\  y  e.  A )  ->  x  e.  A ) )
63, 5bitr4i 243 . . 3  |-  ( A. y ( ( x  e.  y  /\  y  e.  A )  ->  x  e.  A )  <->  ( x  e.  U. A  ->  x  e.  A ) )
76albii 1553 . 2  |-  ( A. x A. y ( ( x  e.  y  /\  y  e.  A )  ->  x  e.  A )  <->  A. x ( x  e. 
U. A  ->  x  e.  A ) )
81, 2, 73bitr4i 268 1  |-  ( Tr  A  <->  A. x A. y
( ( x  e.  y  /\  y  e.  A )  ->  x  e.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527   E.wex 1528    e. wcel 1685    C_ wss 3153   U.cuni 3828   Tr wtr 4114
This theorem is referenced by:  dftr5  4117  trel  4121  ordelord  4413  suctr  4474  trsuc2OLD  4476  ordom  4664  hartogs  7255  card2on  7264  trcl  7406  tskwe  7579  ondomon  8181  dftr6  23513  elpotr  23541  hftr  24222  dford4  26533  tratrb  27582  trsbc  27587  truniALT  27588  sspwtr  27875  sspwtrALT  27876  sspwtrALT2  27877  pwtrVD  27878  pwtrOLD  27879  pwtrrVD  27880  pwtrrOLD  27881  suctrALT2VD  27892  suctrALT2  27893  tratrbVD  27917  trsbcVD  27933  truniALTVD  27934  trintALTVD  27936  trintALT  27937  suctrALTcf  27978  suctrALTcfVD  27979  suctrALT3  27980  suctrALT4  27984
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-v 2791  df-in 3160  df-ss 3167  df-uni 3829  df-tr 4115
  Copyright terms: Public domain W3C validator