Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftr4 Structured version   Unicode version

Theorem dftr4 4299
 Description: An alternate way of defining a transitive class. Definition of [Enderton] p. 71. (Contributed by NM, 29-Aug-1993.)
Assertion
Ref Expression
dftr4

Proof of Theorem dftr4
StepHypRef Expression
1 df-tr 4295 . 2
2 sspwuni 4168 . 2
31, 2bitr4i 244 1
 Colors of variables: wff set class Syntax hints:   wb 177   wss 3312  cpw 3791  cuni 4007   wtr 4294 This theorem is referenced by:  tr0  4305  pwtr  4408  r1ordg  7696  r1sssuc  7701  r1val1  7704  ackbij2lem3  8113  tsktrss  8628 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-v 2950  df-in 3319  df-ss 3326  df-pw 3793  df-uni 4008  df-tr 4295
 Copyright terms: Public domain W3C validator