MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfun3 Unicode version

Theorem dfun3 3515
Description: Union defined in terms of intersection (De Morgan's law). Definition of union in [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
dfun3  |-  ( A  u.  B )  =  ( _V  \  (
( _V  \  A
)  i^i  ( _V  \  B ) ) )

Proof of Theorem dfun3
StepHypRef Expression
1 dfun2 3512 . 2  |-  ( A  u.  B )  =  ( _V  \  (
( _V  \  A
)  \  B )
)
2 dfin2 3513 . . . 4  |-  ( ( _V  \  A )  i^i  ( _V  \  B ) )  =  ( ( _V  \  A )  \  ( _V  \  ( _V  \  B ) ) )
3 ddif 3415 . . . . 5  |-  ( _V 
\  ( _V  \  B ) )  =  B
43difeq2i 3398 . . . 4  |-  ( ( _V  \  A ) 
\  ( _V  \ 
( _V  \  B
) ) )  =  ( ( _V  \  A )  \  B
)
52, 4eqtr2i 2401 . . 3  |-  ( ( _V  \  A ) 
\  B )  =  ( ( _V  \  A )  i^i  ( _V  \  B ) )
65difeq2i 3398 . 2  |-  ( _V 
\  ( ( _V 
\  A )  \  B ) )  =  ( _V  \  (
( _V  \  A
)  i^i  ( _V  \  B ) ) )
71, 6eqtri 2400 1  |-  ( A  u.  B )  =  ( _V  \  (
( _V  \  A
)  i^i  ( _V  \  B ) ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1649   _Vcvv 2892    \ cdif 3253    u. cun 3254    i^i cin 3255
This theorem is referenced by:  difundi  3529  undifv  3638
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ral 2647  df-rab 2651  df-v 2894  df-dif 3259  df-un 3261  df-in 3263
  Copyright terms: Public domain W3C validator