MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfwe2 Unicode version

Theorem dfwe2 4695
Description: Alternate definition of well-ordering. Definition 6.24(2) of [TakeutiZaring] p. 30. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
dfwe2  |-  ( R  We  A  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) ) )
Distinct variable groups:    x, y, R    x, A, y

Proof of Theorem dfwe2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-we 4477 . 2  |-  ( R  We  A  <->  ( R  Fr  A  /\  R  Or  A ) )
2 df-so 4438 . . . 4  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) ) )
3 simpr 448 . . . . 5  |-  ( ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x ) )  ->  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )
4 ax-1 5 . . . . . . . . . . . . . . 15  |-  ( x R z  ->  (
( x R y  /\  y R z )  ->  x R
z ) )
54a1i 11 . . . . . . . . . . . . . 14  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
x R z  -> 
( ( x R y  /\  y R z )  ->  x R z ) ) )
6 fr2nr 4494 . . . . . . . . . . . . . . . . 17  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A
) )  ->  -.  ( x R y  /\  y R x ) )
763adantr3 1118 . . . . . . . . . . . . . . . 16  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  -.  ( x R y  /\  y R x ) )
8 breq2 4150 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  z  ->  (
y R x  <->  y R
z ) )
98anbi2d 685 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  (
( x R y  /\  y R x )  <->  ( x R y  /\  y R z ) ) )
109notbid 286 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  ( -.  ( x R y  /\  y R x )  <->  -.  ( x R y  /\  y R z ) ) )
117, 10syl5ibcom 212 . . . . . . . . . . . . . . 15  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
x  =  z  ->  -.  ( x R y  /\  y R z ) ) )
12 pm2.21 102 . . . . . . . . . . . . . . 15  |-  ( -.  ( x R y  /\  y R z )  ->  ( (
x R y  /\  y R z )  ->  x R z ) )
1311, 12syl6 31 . . . . . . . . . . . . . 14  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
x  =  z  -> 
( ( x R y  /\  y R z )  ->  x R z ) ) )
14 fr3nr 4693 . . . . . . . . . . . . . . . . 17  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  -.  ( x R y  /\  y R z  /\  z R x ) )
15 df-3an 938 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x R y  /\  y R z  /\  z R x )  <->  ( (
x R y  /\  y R z )  /\  z R x ) )
1615biimpri 198 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x R y  /\  y R z )  /\  z R x )  ->  (
x R y  /\  y R z  /\  z R x ) )
1716ancoms 440 . . . . . . . . . . . . . . . . 17  |-  ( ( z R x  /\  ( x R y  /\  y R z ) )  ->  (
x R y  /\  y R z  /\  z R x ) )
1814, 17nsyl 115 . . . . . . . . . . . . . . . 16  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  -.  ( z R x  /\  ( x R y  /\  y R z ) ) )
1918pm2.21d 100 . . . . . . . . . . . . . . 15  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
( z R x  /\  ( x R y  /\  y R z ) )  ->  x R z ) )
2019exp3a 426 . . . . . . . . . . . . . 14  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
z R x  -> 
( ( x R y  /\  y R z )  ->  x R z ) ) )
215, 13, 203jaod 1248 . . . . . . . . . . . . 13  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
( x R z  \/  x  =  z  \/  z R x )  ->  ( (
x R y  /\  y R z )  ->  x R z ) ) )
22 frirr 4493 . . . . . . . . . . . . . 14  |-  ( ( R  Fr  A  /\  x  e.  A )  ->  -.  x R x )
23223ad2antr1 1122 . . . . . . . . . . . . 13  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  -.  x R x )
2421, 23jctild 528 . . . . . . . . . . . 12  |-  ( ( R  Fr  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
( x R z  \/  x  =  z  \/  z R x )  ->  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) ) )
2524ex 424 . . . . . . . . . . 11  |-  ( R  Fr  A  ->  (
( x  e.  A  /\  y  e.  A  /\  z  e.  A
)  ->  ( (
x R z  \/  x  =  z  \/  z R x )  ->  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) ) ) )
2625a2d 24 . . . . . . . . . 10  |-  ( R  Fr  A  ->  (
( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  (
x R z  \/  x  =  z  \/  z R x ) )  ->  ( (
x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) ) )
2726alimdv 1628 . . . . . . . . 9  |-  ( R  Fr  A  ->  ( A. z ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  (
x R z  \/  x  =  z  \/  z R x ) )  ->  A. z
( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) ) )
28272alimdv 1630 . . . . . . . 8  |-  ( R  Fr  A  ->  ( A. x A. y A. z ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  (
x R z  \/  x  =  z  \/  z R x ) )  ->  A. x A. y A. z ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A
)  ->  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) ) ) )
29 r3al 2699 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R z  \/  x  =  z  \/  z R x )  <->  A. x A. y A. z ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  (
x R z  \/  x  =  z  \/  z R x ) ) )
30 r3al 2699 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <->  A. x A. y A. z ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) )
3128, 29, 303imtr4g 262 . . . . . . 7  |-  ( R  Fr  A  ->  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R z  \/  x  =  z  \/  z R x )  ->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) ) )
32 ralidm 3667 . . . . . . . . 9  |-  ( A. y  e.  A  A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x )  <->  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )
33 breq2 4150 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
x R y  <->  x R
z ) )
34 equequ2 1693 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
x  =  y  <->  x  =  z ) )
35 breq1 4149 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
y R x  <->  z R x ) )
3633, 34, 353orbi123d 1253 . . . . . . . . . . 11  |-  ( y  =  z  ->  (
( x R y  \/  x  =  y  \/  y R x )  <->  ( x R z  \/  x  =  z  \/  z R x ) ) )
3736cbvralv 2868 . . . . . . . . . 10  |-  ( A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x )  <->  A. z  e.  A  ( x R z  \/  x  =  z  \/  z R x ) )
3837ralbii 2666 . . . . . . . . 9  |-  ( A. y  e.  A  A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x )  <->  A. y  e.  A  A. z  e.  A  ( x R z  \/  x  =  z  \/  z R x ) )
3932, 38bitr3i 243 . . . . . . . 8  |-  ( A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x )  <->  A. y  e.  A  A. z  e.  A  ( x R z  \/  x  =  z  \/  z R x ) )
4039ralbii 2666 . . . . . . 7  |-  ( A. x  e.  A  A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x )  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R z  \/  x  =  z  \/  z R x ) )
41 df-po 4437 . . . . . . 7  |-  ( R  Po  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) )
4231, 40, 413imtr4g 262 . . . . . 6  |-  ( R  Fr  A  ->  ( A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x )  ->  R  Po  A ) )
4342ancrd 538 . . . . 5  |-  ( R  Fr  A  ->  ( A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x )  ->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) ) ) )
443, 43impbid2 196 . . . 4  |-  ( R  Fr  A  ->  (
( R  Po  A  /\  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )  <->  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) ) )
452, 44syl5bb 249 . . 3  |-  ( R  Fr  A  ->  ( R  Or  A  <->  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) ) )
4645pm5.32i 619 . 2  |-  ( ( R  Fr  A  /\  R  Or  A )  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x ) ) )
471, 46bitri 241 1  |-  ( R  We  A  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    \/ w3o 935    /\ w3a 936   A.wal 1546    e. wcel 1717   A.wral 2642   class class class wbr 4146    Po wpo 4435    Or wor 4436    Fr wfr 4472    We wwe 4474
This theorem is referenced by:  ordon  4696  f1oweALT  6006  dford2  7501  fpwwe2lem12  8442  fpwwe2lem13  8443  dfon2  25165  fnwe2  26812
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-sbc 3098  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-br 4147  df-po 4437  df-so 4438  df-fr 4475  df-we 4477
  Copyright terms: Public domain W3C validator