MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrco Unicode version

Theorem dgrco 19652
Description: The degree of a composition of two polynomials is the product of the degrees. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
dgrco.1  |-  M  =  (deg `  F )
dgrco.2  |-  N  =  (deg `  G )
dgrco.3  |-  ( ph  ->  F  e.  (Poly `  S ) )
dgrco.4  |-  ( ph  ->  G  e.  (Poly `  S ) )
Assertion
Ref Expression
dgrco  |-  ( ph  ->  (deg `  ( F  o.  G ) )  =  ( M  x.  N
) )
Dummy variables  f  x  y  d  g  h are mutually distinct and distinct from all other variables.

Proof of Theorem dgrco
StepHypRef Expression
1 plyssc 19578 . . 3  |-  (Poly `  S )  C_  (Poly `  CC )
2 dgrco.3 . . 3  |-  ( ph  ->  F  e.  (Poly `  S ) )
31, 2sseldi 3181 . 2  |-  ( ph  ->  F  e.  (Poly `  CC ) )
4 dgrco.1 . . . 4  |-  M  =  (deg `  F )
5 dgrcl 19611 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
62, 5syl 17 . . . 4  |-  ( ph  ->  (deg `  F )  e.  NN0 )
74, 6syl5eqel 2370 . . 3  |-  ( ph  ->  M  e.  NN0 )
8 breq2 4030 . . . . . . 7  |-  ( x  =  0  ->  (
(deg `  f )  <_  x  <->  (deg `  f )  <_  0 ) )
98imbi1d 310 . . . . . 6  |-  ( x  =  0  ->  (
( (deg `  f
)  <_  x  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  <->  ( (deg `  f )  <_  0  ->  (deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
109ralbidv 2566 . . . . 5  |-  ( x  =  0  ->  ( A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_  x  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) )  <->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  0  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
1110imbi2d 309 . . . 4  |-  ( x  =  0  ->  (
( ph  ->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  x  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )  <->  ( ph  ->  A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_ 
0  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) ) ) )
12 breq2 4030 . . . . . . 7  |-  ( x  =  d  ->  (
(deg `  f )  <_  x  <->  (deg `  f )  <_  d ) )
1312imbi1d 310 . . . . . 6  |-  ( x  =  d  ->  (
( (deg `  f
)  <_  x  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  <->  ( (deg `  f )  <_  d  ->  (deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
1413ralbidv 2566 . . . . 5  |-  ( x  =  d  ->  ( A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_  x  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) )  <->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  d  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
1514imbi2d 309 . . . 4  |-  ( x  =  d  ->  (
( ph  ->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  x  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )  <->  ( ph  ->  A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_ 
d  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) ) ) )
16 breq2 4030 . . . . . . 7  |-  ( x  =  ( d  +  1 )  ->  (
(deg `  f )  <_  x  <->  (deg `  f )  <_  ( d  +  1 ) ) )
1716imbi1d 310 . . . . . 6  |-  ( x  =  ( d  +  1 )  ->  (
( (deg `  f
)  <_  x  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  <->  ( (deg `  f )  <_  (
d  +  1 )  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) ) )
1817ralbidv 2566 . . . . 5  |-  ( x  =  ( d  +  1 )  ->  ( A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_  x  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) )  <->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  ( d  +  1 )  -> 
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
1918imbi2d 309 . . . 4  |-  ( x  =  ( d  +  1 )  ->  (
( ph  ->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  x  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )  <->  ( ph  ->  A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_ 
( d  +  1 )  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) ) ) )
20 breq2 4030 . . . . . . 7  |-  ( x  =  M  ->  (
(deg `  f )  <_  x  <->  (deg `  f )  <_  M ) )
2120imbi1d 310 . . . . . 6  |-  ( x  =  M  ->  (
( (deg `  f
)  <_  x  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  <->  ( (deg `  f )  <_  M  ->  (deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
2221ralbidv 2566 . . . . 5  |-  ( x  =  M  ->  ( A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_  x  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) )  <->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  M  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
2322imbi2d 309 . . . 4  |-  ( x  =  M  ->  (
( ph  ->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  x  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )  <->  ( ph  ->  A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_  M  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) ) ) )
24 dgrco.2 . . . . . . . . . . . 12  |-  N  =  (deg `  G )
25 dgrco.4 . . . . . . . . . . . . 13  |-  ( ph  ->  G  e.  (Poly `  S ) )
26 dgrcl 19611 . . . . . . . . . . . . 13  |-  ( G  e.  (Poly `  S
)  ->  (deg `  G
)  e.  NN0 )
2725, 26syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  (deg `  G )  e.  NN0 )
2824, 27syl5eqel 2370 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN0 )
2928nn0cnd 10017 . . . . . . . . . 10  |-  ( ph  ->  N  e.  CC )
3029adantr 453 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  ->  N  e.  CC )
3130mul02d 9007 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
( 0  x.  N
)  =  0 )
32 simprr 735 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
(deg `  f )  <_  0 )
33 dgrcl 19611 . . . . . . . . . . . 12  |-  ( f  e.  (Poly `  CC )  ->  (deg `  f
)  e.  NN0 )
3433ad2antrl 710 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
(deg `  f )  e.  NN0 )
3534nn0ge0d 10018 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
0  <_  (deg `  f
) )
3634nn0red 10016 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
(deg `  f )  e.  RR )
37 0re 8835 . . . . . . . . . . 11  |-  0  e.  RR
38 letri3 8904 . . . . . . . . . . 11  |-  ( ( (deg `  f )  e.  RR  /\  0  e.  RR )  ->  (
(deg `  f )  =  0  <->  ( (deg `  f )  <_  0  /\  0  <_  (deg `  f ) ) ) )
3936, 37, 38sylancl 645 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
( (deg `  f
)  =  0  <->  (
(deg `  f )  <_  0  /\  0  <_ 
(deg `  f )
) ) )
4032, 35, 39mpbir2and 890 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
(deg `  f )  =  0 )
4140oveq1d 5836 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
( (deg `  f
)  x.  N )  =  ( 0  x.  N ) )
4231, 41, 403eqtr4d 2328 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
( (deg `  f
)  x.  N )  =  (deg `  f
) )
43 fconstmpt 4733 . . . . . . . . 9  |-  ( CC 
X.  { ( f `
 0 ) } )  =  ( y  e.  CC  |->  ( f `
 0 ) )
44 0dgrb 19624 . . . . . . . . . . 11  |-  ( f  e.  (Poly `  CC )  ->  ( (deg `  f )  =  0  <-> 
f  =  ( CC 
X.  { ( f `
 0 ) } ) ) )
4544ad2antrl 710 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
( (deg `  f
)  =  0  <->  f  =  ( CC  X.  { ( f ` 
0 ) } ) ) )
4640, 45mpbid 203 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
f  =  ( CC 
X.  { ( f `
 0 ) } ) )
4725adantr 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  ->  G  e.  (Poly `  S
) )
48 plyf 19576 . . . . . . . . . . . 12  |-  ( G  e.  (Poly `  S
)  ->  G : CC
--> CC )
4947, 48syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  ->  G : CC --> CC )
50 ffvelrn 5626 . . . . . . . . . . 11  |-  ( ( G : CC --> CC  /\  y  e.  CC )  ->  ( G `  y
)  e.  CC )
5149, 50sylan 459 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0
) )  /\  y  e.  CC )  ->  ( G `  y )  e.  CC )
5249feqmptd 5538 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  ->  G  =  ( y  e.  CC  |->  ( G `  y ) ) )
53 fconstmpt 4733 . . . . . . . . . . 11  |-  ( CC 
X.  { ( f `
 0 ) } )  =  ( x  e.  CC  |->  ( f `
 0 ) )
5446, 53syl6eq 2334 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
f  =  ( x  e.  CC  |->  ( f `
 0 ) ) )
55 eqidd 2287 . . . . . . . . . 10  |-  ( x  =  ( G `  y )  ->  (
f `  0 )  =  ( f ` 
0 ) )
5651, 52, 54, 55fmptco 5654 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
( f  o.  G
)  =  ( y  e.  CC  |->  ( f `
 0 ) ) )
5743, 46, 563eqtr4a 2344 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
f  =  ( f  o.  G ) )
5857fveq2d 5491 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
(deg `  f )  =  (deg `  ( f  o.  G ) ) )
5942, 58eqtr2d 2319 . . . . . 6  |-  ( (
ph  /\  ( f  e.  (Poly `  CC )  /\  (deg `  f )  <_  0 ) )  -> 
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )
6059expr 600 . . . . 5  |-  ( (
ph  /\  f  e.  (Poly `  CC ) )  ->  ( (deg `  f )  <_  0  ->  (deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )
6160ralrimiva 2629 . . . 4  |-  ( ph  ->  A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_ 
0  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) )
62 fveq2 5487 . . . . . . . . . 10  |-  ( f  =  g  ->  (deg `  f )  =  (deg
`  g ) )
6362breq1d 4036 . . . . . . . . 9  |-  ( f  =  g  ->  (
(deg `  f )  <_  d  <->  (deg `  g )  <_  d ) )
64 coeq1 4842 . . . . . . . . . . 11  |-  ( f  =  g  ->  (
f  o.  G )  =  ( g  o.  G ) )
6564fveq2d 5491 . . . . . . . . . 10  |-  ( f  =  g  ->  (deg `  ( f  o.  G
) )  =  (deg
`  ( g  o.  G ) ) )
6662oveq1d 5836 . . . . . . . . . 10  |-  ( f  =  g  ->  (
(deg `  f )  x.  N )  =  ( (deg `  g )  x.  N ) )
6765, 66eqeq12d 2300 . . . . . . . . 9  |-  ( f  =  g  ->  (
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N )  <-> 
(deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )
6863, 67imbi12d 313 . . . . . . . 8  |-  ( f  =  g  ->  (
( (deg `  f
)  <_  d  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  <->  ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )
6968cbvralv 2767 . . . . . . 7  |-  ( A. f  e.  (Poly `  CC ) ( (deg `  f )  <_  d  ->  (deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  <->  A. g  e.  (Poly `  CC ) ( (deg
`  g )  <_ 
d  ->  (deg `  (
g  o.  G ) )  =  ( (deg
`  g )  x.  N ) ) )
7033ad2antrl 710 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
(deg `  f )  e.  NN0 )
7170nn0red 10016 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
(deg `  f )  e.  RR )
72 nn0p1nn 10000 . . . . . . . . . . . . 13  |-  ( d  e.  NN0  ->  ( d  +  1 )  e.  NN )
7372ad2antlr 709 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
( d  +  1 )  e.  NN )
7473nnred 9758 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
( d  +  1 )  e.  RR )
7571, 74leloed 8959 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
( (deg `  f
)  <_  ( d  +  1 )  <->  ( (deg `  f )  <  (
d  +  1 )  \/  (deg `  f
)  =  ( d  +  1 ) ) ) )
76 simplr 733 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
d  e.  NN0 )
77 nn0leltp1 10072 . . . . . . . . . . . . 13  |-  ( ( (deg `  f )  e.  NN0  /\  d  e. 
NN0 )  ->  (
(deg `  f )  <_  d  <->  (deg `  f )  <  ( d  +  1 ) ) )
7870, 76, 77syl2anc 644 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
( (deg `  f
)  <_  d  <->  (deg `  f
)  <  ( d  +  1 ) ) )
79 fveq2 5487 . . . . . . . . . . . . . . . 16  |-  ( g  =  f  ->  (deg `  g )  =  (deg
`  f ) )
8079breq1d 4036 . . . . . . . . . . . . . . 15  |-  ( g  =  f  ->  (
(deg `  g )  <_  d  <->  (deg `  f )  <_  d ) )
81 coeq1 4842 . . . . . . . . . . . . . . . . 17  |-  ( g  =  f  ->  (
g  o.  G )  =  ( f  o.  G ) )
8281fveq2d 5491 . . . . . . . . . . . . . . . 16  |-  ( g  =  f  ->  (deg `  ( g  o.  G
) )  =  (deg
`  ( f  o.  G ) ) )
8379oveq1d 5836 . . . . . . . . . . . . . . . 16  |-  ( g  =  f  ->  (
(deg `  g )  x.  N )  =  ( (deg `  f )  x.  N ) )
8482, 83eqeq12d 2300 . . . . . . . . . . . . . . 15  |-  ( g  =  f  ->  (
(deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N )  <-> 
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )
8580, 84imbi12d 313 . . . . . . . . . . . . . 14  |-  ( g  =  f  ->  (
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) )  <->  ( (deg `  f )  <_  d  ->  (deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
8685rspcva 2885 . . . . . . . . . . . . 13  |-  ( ( f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )  ->  (
(deg `  f )  <_  d  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) )
8786adantl 454 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
( (deg `  f
)  <_  d  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )
8878, 87sylbird 228 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
( (deg `  f
)  <  ( d  +  1 )  -> 
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )
89 eqid 2286 . . . . . . . . . . . . 13  |-  (deg `  f )  =  (deg
`  f )
90 simprll 740 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
( f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )  /\  (deg `  f )  =  ( d  +  1 ) ) )  ->  f  e.  (Poly `  CC )
)
911, 25sseldi 3181 . . . . . . . . . . . . . 14  |-  ( ph  ->  G  e.  (Poly `  CC ) )
9291ad2antrr 708 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
( f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )  /\  (deg `  f )  =  ( d  +  1 ) ) )  ->  G  e.  (Poly `  CC )
)
93 eqid 2286 . . . . . . . . . . . . 13  |-  (coeff `  f )  =  (coeff `  f )
94 simplr 733 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
( f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )  /\  (deg `  f )  =  ( d  +  1 ) ) )  ->  d  e.  NN0 )
95 simprr 735 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
( f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )  /\  (deg `  f )  =  ( d  +  1 ) ) )  ->  (deg `  f )  =  ( d  +  1 ) )
96 simprlr 741 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
( f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )  /\  (deg `  f )  =  ( d  +  1 ) ) )  ->  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )
97 fveq2 5487 . . . . . . . . . . . . . . . . 17  |-  ( g  =  h  ->  (deg `  g )  =  (deg
`  h ) )
9897breq1d 4036 . . . . . . . . . . . . . . . 16  |-  ( g  =  h  ->  (
(deg `  g )  <_  d  <->  (deg `  h )  <_  d ) )
99 coeq1 4842 . . . . . . . . . . . . . . . . . 18  |-  ( g  =  h  ->  (
g  o.  G )  =  ( h  o.  G ) )
10099fveq2d 5491 . . . . . . . . . . . . . . . . 17  |-  ( g  =  h  ->  (deg `  ( g  o.  G
) )  =  (deg
`  ( h  o.  G ) ) )
10197oveq1d 5836 . . . . . . . . . . . . . . . . 17  |-  ( g  =  h  ->  (
(deg `  g )  x.  N )  =  ( (deg `  h )  x.  N ) )
102100, 101eqeq12d 2300 . . . . . . . . . . . . . . . 16  |-  ( g  =  h  ->  (
(deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N )  <-> 
(deg `  ( h  o.  G ) )  =  ( (deg `  h
)  x.  N ) ) )
10398, 102imbi12d 313 . . . . . . . . . . . . . . 15  |-  ( g  =  h  ->  (
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) )  <->  ( (deg `  h )  <_  d  ->  (deg `  ( h  o.  G ) )  =  ( (deg `  h
)  x.  N ) ) ) )
104103cbvralv 2767 . . . . . . . . . . . . . 14  |-  ( A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) )  <->  A. h  e.  (Poly `  CC ) ( (deg
`  h )  <_ 
d  ->  (deg `  (
h  o.  G ) )  =  ( (deg
`  h )  x.  N ) ) )
10596, 104sylib 190 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
( f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )  /\  (deg `  f )  =  ( d  +  1 ) ) )  ->  A. h  e.  (Poly `  CC )
( (deg `  h
)  <_  d  ->  (deg
`  ( h  o.  G ) )  =  ( (deg `  h
)  x.  N ) ) )
10689, 24, 90, 92, 93, 94, 95, 105dgrcolem2 19651 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
( f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) )  /\  (deg `  f )  =  ( d  +  1 ) ) )  ->  (deg `  ( f  o.  G
) )  =  ( (deg `  f )  x.  N ) )
107106expr 600 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
( (deg `  f
)  =  ( d  +  1 )  -> 
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )
10888, 107jaod 371 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
( ( (deg `  f )  <  (
d  +  1 )  \/  (deg `  f
)  =  ( d  +  1 ) )  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) )
10975, 108sylbid 208 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
f  e.  (Poly `  CC )  /\  A. g  e.  (Poly `  CC )
( (deg `  g
)  <_  d  ->  (deg
`  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) ) ) )  -> 
( (deg `  f
)  <_  ( d  +  1 )  -> 
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) )
110109expr 600 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  f  e.  (Poly `  CC )
)  ->  ( A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) )  ->  ( (deg `  f )  <_  (
d  +  1 )  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) ) )
111110ralrimdva 2636 . . . . . . 7  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( A. g  e.  (Poly `  CC ) ( (deg `  g )  <_  d  ->  (deg `  ( g  o.  G ) )  =  ( (deg `  g
)  x.  N ) )  ->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  ( d  +  1 )  -> 
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
11269, 111syl5bi 210 . . . . . 6  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( A. f  e.  (Poly `  CC ) ( (deg `  f )  <_  d  ->  (deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  ->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  ( d  +  1 )  -> 
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) )
113112expcom 426 . . . . 5  |-  ( d  e.  NN0  ->  ( ph  ->  ( A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  d  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  ->  A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  ( d  +  1 )  -> 
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) ) ) ) )
114113a2d 25 . . . 4  |-  ( d  e.  NN0  ->  ( (
ph  ->  A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_ 
d  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) )  ->  ( ph  ->  A. f  e.  (Poly `  CC ) ( (deg `  f )  <_  (
d  +  1 )  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) ) ) )
11511, 15, 19, 23, 61, 114nn0ind 10105 . . 3  |-  ( M  e.  NN0  ->  ( ph  ->  A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_  M  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) ) )
1167, 115mpcom 34 . 2  |-  ( ph  ->  A. f  e.  (Poly `  CC ) ( (deg
`  f )  <_  M  ->  (deg `  (
f  o.  G ) )  =  ( (deg
`  f )  x.  N ) ) )
1177nn0red 10016 . . 3  |-  ( ph  ->  M  e.  RR )
118117leidd 9336 . 2  |-  ( ph  ->  M  <_  M )
119 fveq2 5487 . . . . . 6  |-  ( f  =  F  ->  (deg `  f )  =  (deg
`  F ) )
120119, 4syl6eqr 2336 . . . . 5  |-  ( f  =  F  ->  (deg `  f )  =  M )
121120breq1d 4036 . . . 4  |-  ( f  =  F  ->  (
(deg `  f )  <_  M  <->  M  <_  M ) )
122 coeq1 4842 . . . . . 6  |-  ( f  =  F  ->  (
f  o.  G )  =  ( F  o.  G ) )
123122fveq2d 5491 . . . . 5  |-  ( f  =  F  ->  (deg `  ( f  o.  G
) )  =  (deg
`  ( F  o.  G ) ) )
124120oveq1d 5836 . . . . 5  |-  ( f  =  F  ->  (
(deg `  f )  x.  N )  =  ( M  x.  N ) )
125123, 124eqeq12d 2300 . . . 4  |-  ( f  =  F  ->  (
(deg `  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N )  <-> 
(deg `  ( F  o.  G ) )  =  ( M  x.  N
) ) )
126121, 125imbi12d 313 . . 3  |-  ( f  =  F  ->  (
( (deg `  f
)  <_  M  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  <->  ( M  <_  M  ->  (deg `  ( F  o.  G )
)  =  ( M  x.  N ) ) ) )
127126rspcv 2883 . 2  |-  ( F  e.  (Poly `  CC )  ->  ( A. f  e.  (Poly `  CC )
( (deg `  f
)  <_  M  ->  (deg
`  ( f  o.  G ) )  =  ( (deg `  f
)  x.  N ) )  ->  ( M  <_  M  ->  (deg `  ( F  o.  G )
)  =  ( M  x.  N ) ) ) )
1283, 116, 118, 127syl3c 59 1  |-  ( ph  ->  (deg `  ( F  o.  G ) )  =  ( M  x.  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1625    e. wcel 1687   A.wral 2546   {csn 3643   class class class wbr 4026    e. cmpt 4080    X. cxp 4688    o. ccom 4694   -->wf 5219   ` cfv 5223  (class class class)co 5821   CCcc 8732   RRcr 8733   0cc0 8734   1c1 8735    + caddc 8737    x. cmul 8739    < clt 8864    <_ cle 8865   NNcn 9743   NN0cn0 9962  Polycply 19562  coeffccoe 19564  degcdgr 19565
This theorem is referenced by:  taylply2  19743  ftalem7  20312
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1638  ax-8 1646  ax-13 1689  ax-14 1691  ax-6 1706  ax-7 1711  ax-11 1718  ax-12 1870  ax-ext 2267  ax-rep 4134  ax-sep 4144  ax-nul 4152  ax-pow 4189  ax-pr 4215  ax-un 4513  ax-inf2 7339  ax-cnex 8790  ax-resscn 8791  ax-1cn 8792  ax-icn 8793  ax-addcl 8794  ax-addrcl 8795  ax-mulcl 8796  ax-mulrcl 8797  ax-mulcom 8798  ax-addass 8799  ax-mulass 8800  ax-distr 8801  ax-i2m1 8802  ax-1ne0 8803  ax-1rid 8804  ax-rnegex 8805  ax-rrecex 8806  ax-cnre 8807  ax-pre-lttri 8808  ax-pre-lttrn 8809  ax-pre-ltadd 8810  ax-pre-mulgt0 8811  ax-pre-sup 8812  ax-addf 8813
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1531  df-nf 1534  df-sb 1633  df-eu 2150  df-mo 2151  df-clab 2273  df-cleq 2279  df-clel 2282  df-nfc 2411  df-ne 2451  df-nel 2452  df-ral 2551  df-rex 2552  df-reu 2553  df-rmo 2554  df-rab 2555  df-v 2793  df-sbc 2995  df-csb 3085  df-dif 3158  df-un 3160  df-in 3162  df-ss 3169  df-pss 3171  df-nul 3459  df-if 3569  df-pw 3630  df-sn 3649  df-pr 3650  df-tp 3651  df-op 3652  df-uni 3831  df-int 3866  df-iun 3910  df-br 4027  df-opab 4081  df-mpt 4082  df-tr 4117  df-eprel 4306  df-id 4310  df-po 4315  df-so 4316  df-fr 4353  df-se 4354  df-we 4355  df-ord 4396  df-on 4397  df-lim 4398  df-suc 4399  df-om 4658  df-xp 4696  df-rel 4697  df-cnv 4698  df-co 4699  df-dm 4700  df-rn 4701  df-res 4702  df-ima 4703  df-fun 5225  df-fn 5226  df-f 5227  df-f1 5228  df-fo 5229  df-f1o 5230  df-fv 5231  df-isom 5232  df-ov 5824  df-oprab 5825  df-mpt2 5826  df-of 6041  df-1st 6085  df-2nd 6086  df-iota 6254  df-riota 6301  df-recs 6385  df-rdg 6420  df-1o 6476  df-oadd 6480  df-er 6657  df-map 6771  df-pm 6772  df-en 6861  df-dom 6862  df-sdom 6863  df-fin 6864  df-sup 7191  df-oi 7222  df-card 7569  df-pnf 8866  df-mnf 8867  df-xr 8868  df-ltxr 8869  df-le 8870  df-sub 9036  df-neg 9037  df-div 9421  df-nn 9744  df-2 9801  df-3 9802  df-n0 9963  df-z 10022  df-uz 10228  df-rp 10352  df-fz 10779  df-fzo 10867  df-fl 10921  df-seq 11043  df-exp 11101  df-hash 11334  df-cj 11580  df-re 11581  df-im 11582  df-sqr 11716  df-abs 11717  df-clim 11958  df-rlim 11959  df-sum 12155  df-0p 19021  df-ply 19566  df-coe 19568  df-dgr 19569
  Copyright terms: Public domain W3C validator