Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia11N Unicode version

Theorem dia11N 30368
Description: The partial isomorphism A for a lattice  K is one-to-one in the region under co-atom  W. Part of Lemma M of [Crawley] p. 120 line 28. (Contributed by NM, 25-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dia11.b  |-  B  =  ( Base `  K
)
dia11.l  |-  .<_  =  ( le `  K )
dia11.h  |-  H  =  ( LHyp `  K
)
dia11.i  |-  I  =  ( ( DIsoA `  K
) `  W )
Assertion
Ref Expression
dia11N  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( ( I `  X )  =  ( I `  Y )  <-> 
X  =  Y ) )

Proof of Theorem dia11N
StepHypRef Expression
1 eqss 3136 . 2  |-  ( ( I `  X )  =  ( I `  Y )  <->  ( (
I `  X )  C_  ( I `  Y
)  /\  ( I `  Y )  C_  (
I `  X )
) )
2 dia11.b . . . . 5  |-  B  =  ( Base `  K
)
3 dia11.l . . . . 5  |-  .<_  =  ( le `  K )
4 dia11.h . . . . 5  |-  H  =  ( LHyp `  K
)
5 dia11.i . . . . 5  |-  I  =  ( ( DIsoA `  K
) `  W )
62, 3, 4, 5diaord 30367 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( ( I `  X )  C_  (
I `  Y )  <->  X 
.<_  Y ) )
72, 3, 4, 5diaord 30367 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Y  e.  B  /\  Y  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  -> 
( ( I `  Y )  C_  (
I `  X )  <->  Y 
.<_  X ) )
873com23 1162 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( ( I `  Y )  C_  (
I `  X )  <->  Y 
.<_  X ) )
96, 8anbi12d 694 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( ( ( I `
 X )  C_  ( I `  Y
)  /\  ( I `  Y )  C_  (
I `  X )
)  <->  ( X  .<_  Y  /\  Y  .<_  X ) ) )
10 simp1l 984 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  K  e.  HL )
11 hllat 28683 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
1210, 11syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  K  e.  Lat )
13 simp2l 986 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  X  e.  B )
14 simp3l 988 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  Y  e.  B )
152, 3latasymb 14087 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .<_  Y  /\  Y  .<_  X )  <-> 
X  =  Y ) )
1612, 13, 14, 15syl3anc 1187 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( ( X  .<_  Y  /\  Y  .<_  X )  <-> 
X  =  Y ) )
179, 16bitrd 246 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( ( ( I `
 X )  C_  ( I `  Y
)  /\  ( I `  Y )  C_  (
I `  X )
)  <->  X  =  Y
) )
181, 17syl5bb 250 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( ( I `  X )  =  ( I `  Y )  <-> 
X  =  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    C_ wss 3094   class class class wbr 3963   ` cfv 4638   Basecbs 13075   lecple 13142   Latclat 14078   HLchlt 28670   LHypclh 29303   DIsoAcdia 30348
This theorem is referenced by:  diaf11N  30369
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-iun 3848  df-iin 3849  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-undef 6229  df-riota 6237  df-map 6707  df-poset 14007  df-plt 14019  df-lub 14035  df-glb 14036  df-join 14037  df-meet 14038  df-p0 14072  df-p1 14073  df-lat 14079  df-clat 14141  df-oposet 28496  df-ol 28498  df-oml 28499  df-covers 28586  df-ats 28587  df-atl 28618  df-cvlat 28642  df-hlat 28671  df-llines 28817  df-lplanes 28818  df-lvols 28819  df-lines 28820  df-psubsp 28822  df-pmap 28823  df-padd 29115  df-lhyp 29307  df-laut 29308  df-ldil 29423  df-ltrn 29424  df-trl 29478  df-disoa 30349
  Copyright terms: Public domain W3C validator