Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia1dim Unicode version

Theorem dia1dim 30518
Description: Two expressions for the 1-dimensional subspaces of partial vector space A (when  F is a nonzero vector i.e. non-identity translation). Remark after Lemma L in [Crawley] p. 120 line 21. (Contributed by NM, 15-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dia1dim.h  |-  H  =  ( LHyp `  K
)
dia1dim.t  |-  T  =  ( ( LTrn `  K
) `  W )
dia1dim.r  |-  R  =  ( ( trL `  K
) `  W )
dia1dim.e  |-  E  =  ( ( TEndo `  K
) `  W )
dia1dim.i  |-  I  =  ( ( DIsoA `  K
) `  W )
Assertion
Ref Expression
dia1dim  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( I `  ( R `  F
) )  =  {
g  |  E. s  e.  E  g  =  ( s `  F
) } )
Distinct variable groups:    E, s    g, s, F    g, H, s    g, K, s    R, g, s    T, g, s   
g, W, s
Allowed substitution hints:    E( g)    I(
g, s)

Proof of Theorem dia1dim
StepHypRef Expression
1 simpl 445 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( K  e.  HL  /\  W  e.  H ) )
2 eqid 2284 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
3 dia1dim.h . . . 4  |-  H  =  ( LHyp `  K
)
4 dia1dim.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
5 dia1dim.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
62, 3, 4, 5trlcl 29620 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  e.  (
Base `  K )
)
7 eqid 2284 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
87, 3, 4, 5trlle 29640 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F ) ( le
`  K ) W )
9 dia1dim.i . . . 4  |-  I  =  ( ( DIsoA `  K
) `  W )
102, 7, 3, 4, 5, 9diaval 30489 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R `
 F )  e.  ( Base `  K
)  /\  ( R `  F ) ( le
`  K ) W ) )  ->  (
I `  ( R `  F ) )  =  { g  e.  T  |  ( R `  g ) ( le
`  K ) ( R `  F ) } )
111, 6, 8, 10syl12anc 1182 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( I `  ( R `  F
) )  =  {
g  e.  T  | 
( R `  g
) ( le `  K ) ( R `
 F ) } )
12 dia1dim.e . . 3  |-  E  =  ( ( TEndo `  K
) `  W )
137, 3, 4, 5, 12dva1dim 30441 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  { g  |  E. s  e.  E  g  =  ( s `  F ) }  =  { g  e.  T  |  ( R `  g ) ( le
`  K ) ( R `  F ) } )
1411, 13eqtr4d 2319 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( I `  ( R `  F
) )  =  {
g  |  E. s  e.  E  g  =  ( s `  F
) } )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1624    e. wcel 1685   {cab 2270   E.wrex 2545   {crab 2548   class class class wbr 4024   ` cfv 5221   Basecbs 13142   lecple 13209   HLchlt 28807   LHypclh 29440   LTrncltrn 29557   trLctrl 29614   TEndoctendo 30208   DIsoAcdia 30485
This theorem is referenced by:  dia1dim2  30519  dib1dim  30622
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-undef 6291  df-riota 6299  df-map 6769  df-poset 14074  df-plt 14086  df-lub 14102  df-glb 14103  df-join 14104  df-meet 14105  df-p0 14139  df-p1 14140  df-lat 14146  df-clat 14208  df-oposet 28633  df-ol 28635  df-oml 28636  df-covers 28723  df-ats 28724  df-atl 28755  df-cvlat 28779  df-hlat 28808  df-llines 28954  df-lplanes 28955  df-lvols 28956  df-lines 28957  df-psubsp 28959  df-pmap 28960  df-padd 29252  df-lhyp 29444  df-laut 29445  df-ldil 29560  df-ltrn 29561  df-trl 29615  df-tendo 30211  df-disoa 30486
  Copyright terms: Public domain W3C validator