Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia1dim Unicode version

Theorem dia1dim 31590
Description: Two expressions for the 1-dimensional subspaces of partial vector space A (when  F is a nonzero vector i.e. non-identity translation). Remark after Lemma L in [Crawley] p. 120 line 21. (Contributed by NM, 15-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dia1dim.h  |-  H  =  ( LHyp `  K
)
dia1dim.t  |-  T  =  ( ( LTrn `  K
) `  W )
dia1dim.r  |-  R  =  ( ( trL `  K
) `  W )
dia1dim.e  |-  E  =  ( ( TEndo `  K
) `  W )
dia1dim.i  |-  I  =  ( ( DIsoA `  K
) `  W )
Assertion
Ref Expression
dia1dim  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( I `  ( R `  F
) )  =  {
g  |  E. s  e.  E  g  =  ( s `  F
) } )
Distinct variable groups:    E, s    g, s, F    g, H, s    g, K, s    R, g, s    T, g, s   
g, W, s
Allowed substitution hints:    E( g)    I(
g, s)

Proof of Theorem dia1dim
StepHypRef Expression
1 simpl 444 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( K  e.  HL  /\  W  e.  H ) )
2 eqid 2430 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
3 dia1dim.h . . . 4  |-  H  =  ( LHyp `  K
)
4 dia1dim.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
5 dia1dim.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
62, 3, 4, 5trlcl 30692 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  e.  (
Base `  K )
)
7 eqid 2430 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
87, 3, 4, 5trlle 30712 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F ) ( le
`  K ) W )
9 dia1dim.i . . . 4  |-  I  =  ( ( DIsoA `  K
) `  W )
102, 7, 3, 4, 5, 9diaval 31561 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R `
 F )  e.  ( Base `  K
)  /\  ( R `  F ) ( le
`  K ) W ) )  ->  (
I `  ( R `  F ) )  =  { g  e.  T  |  ( R `  g ) ( le
`  K ) ( R `  F ) } )
111, 6, 8, 10syl12anc 1182 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( I `  ( R `  F
) )  =  {
g  e.  T  | 
( R `  g
) ( le `  K ) ( R `
 F ) } )
12 dia1dim.e . . 3  |-  E  =  ( ( TEndo `  K
) `  W )
137, 3, 4, 5, 12dva1dim 31513 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  { g  |  E. s  e.  E  g  =  ( s `  F ) }  =  { g  e.  T  |  ( R `  g ) ( le
`  K ) ( R `  F ) } )
1411, 13eqtr4d 2465 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( I `  ( R `  F
) )  =  {
g  |  E. s  e.  E  g  =  ( s `  F
) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   {cab 2416   E.wrex 2693   {crab 2696   class class class wbr 4199   ` cfv 5440   Basecbs 13452   lecple 13519   HLchlt 29879   LHypclh 30512   LTrncltrn 30629   trLctrl 30686   TEndoctendo 31280   DIsoAcdia 31557
This theorem is referenced by:  dia1dim2  31591  dib1dim  31694
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-rep 4307  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-nel 2596  df-ral 2697  df-rex 2698  df-reu 2699  df-rmo 2700  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-op 3810  df-uni 4003  df-iun 4082  df-iin 4083  df-br 4200  df-opab 4254  df-mpt 4255  df-id 4485  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-1st 6335  df-2nd 6336  df-undef 6529  df-riota 6535  df-map 7006  df-poset 14386  df-plt 14398  df-lub 14414  df-glb 14415  df-join 14416  df-meet 14417  df-p0 14451  df-p1 14452  df-lat 14458  df-clat 14520  df-oposet 29705  df-ol 29707  df-oml 29708  df-covers 29795  df-ats 29796  df-atl 29827  df-cvlat 29851  df-hlat 29880  df-llines 30026  df-lplanes 30027  df-lvols 30028  df-lines 30029  df-psubsp 30031  df-pmap 30032  df-padd 30324  df-lhyp 30516  df-laut 30517  df-ldil 30632  df-ltrn 30633  df-trl 30687  df-tendo 31283  df-disoa 31558
  Copyright terms: Public domain W3C validator