Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem1 Unicode version

Theorem dia2dimlem1 30504
Description: Lemma for dia2dim 30517. Show properties of the auxiliary atom  Q. Part of proof of Lemma M in [Crawley] p. 121 line 3. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem1.l  |-  .<_  =  ( le `  K )
dia2dimlem1.j  |-  .\/  =  ( join `  K )
dia2dimlem1.m  |-  ./\  =  ( meet `  K )
dia2dimlem1.a  |-  A  =  ( Atoms `  K )
dia2dimlem1.h  |-  H  =  ( LHyp `  K
)
dia2dimlem1.t  |-  T  =  ( ( LTrn `  K
) `  W )
dia2dimlem1.r  |-  R  =  ( ( trL `  K
) `  W )
dia2dimlem1.q  |-  Q  =  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )
dia2dimlem1.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
dia2dimlem1.u  |-  ( ph  ->  ( U  e.  A  /\  U  .<_  W ) )
dia2dimlem1.v  |-  ( ph  ->  ( V  e.  A  /\  V  .<_  W ) )
dia2dimlem1.p  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
dia2dimlem1.f  |-  ( ph  ->  ( F  e.  T  /\  ( F `  P
)  =/=  P ) )
dia2dimlem1.rf  |-  ( ph  ->  ( R `  F
)  .<_  ( U  .\/  V ) )
dia2dimlem1.uv  |-  ( ph  ->  U  =/=  V )
dia2dimlem1.ru  |-  ( ph  ->  ( R `  F
)  =/=  U )
Assertion
Ref Expression
dia2dimlem1  |-  ( ph  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )

Proof of Theorem dia2dimlem1
StepHypRef Expression
1 dia2dimlem1.q . . 3  |-  Q  =  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )
2 dia2dimlem1.k . . . . 5  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
32simpld 447 . . . 4  |-  ( ph  ->  K  e.  HL )
4 dia2dimlem1.p . . . . 5  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
54simpld 447 . . . 4  |-  ( ph  ->  P  e.  A )
6 dia2dimlem1.f . . . . 5  |-  ( ph  ->  ( F  e.  T  /\  ( F `  P
)  =/=  P ) )
7 dia2dimlem1.l . . . . . 6  |-  .<_  =  ( le `  K )
8 dia2dimlem1.a . . . . . 6  |-  A  =  ( Atoms `  K )
9 dia2dimlem1.h . . . . . 6  |-  H  =  ( LHyp `  K
)
10 dia2dimlem1.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
11 dia2dimlem1.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
127, 8, 9, 10, 11trlat 29608 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  e.  A
)
132, 4, 6, 12syl3anc 1187 . . . 4  |-  ( ph  ->  ( R `  F
)  e.  A )
14 dia2dimlem1.u . . . . 5  |-  ( ph  ->  ( U  e.  A  /\  U  .<_  W ) )
1514simpld 447 . . . 4  |-  ( ph  ->  U  e.  A )
166simpld 447 . . . . . 6  |-  ( ph  ->  F  e.  T )
177, 8, 9, 10ltrnel 29578 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
182, 16, 4, 17syl3anc 1187 . . . . 5  |-  ( ph  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
1918simpld 447 . . . 4  |-  ( ph  ->  ( F `  P
)  e.  A )
20 dia2dimlem1.v . . . . 5  |-  ( ph  ->  ( V  e.  A  /\  V  .<_  W ) )
2120simpld 447 . . . 4  |-  ( ph  ->  V  e.  A )
224simprd 451 . . . . . 6  |-  ( ph  ->  -.  P  .<_  W )
237, 9, 10, 11trlle 29623 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  .<_  W )
242, 16, 23syl2anc 645 . . . . . . . 8  |-  ( ph  ->  ( R `  F
)  .<_  W )
2514simprd 451 . . . . . . . 8  |-  ( ph  ->  U  .<_  W )
26 hllat 28803 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  Lat )
273, 26syl 17 . . . . . . . . 9  |-  ( ph  ->  K  e.  Lat )
28 eqid 2258 . . . . . . . . . . 11  |-  ( Base `  K )  =  (
Base `  K )
2928, 8atbase 28729 . . . . . . . . . 10  |-  ( ( R `  F )  e.  A  ->  ( R `  F )  e.  ( Base `  K
) )
3013, 29syl 17 . . . . . . . . 9  |-  ( ph  ->  ( R `  F
)  e.  ( Base `  K ) )
3128, 8atbase 28729 . . . . . . . . . 10  |-  ( U  e.  A  ->  U  e.  ( Base `  K
) )
3215, 31syl 17 . . . . . . . . 9  |-  ( ph  ->  U  e.  ( Base `  K ) )
332simprd 451 . . . . . . . . . 10  |-  ( ph  ->  W  e.  H )
3428, 9lhpbase 29437 . . . . . . . . . 10  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
3533, 34syl 17 . . . . . . . . 9  |-  ( ph  ->  W  e.  ( Base `  K ) )
36 dia2dimlem1.j . . . . . . . . . 10  |-  .\/  =  ( join `  K )
3728, 7, 36latjle12 14131 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( ( R `  F )  e.  (
Base `  K )  /\  U  e.  ( Base `  K )  /\  W  e.  ( Base `  K ) ) )  ->  ( ( ( R `  F ) 
.<_  W  /\  U  .<_  W )  <->  ( ( R `
 F )  .\/  U )  .<_  W )
)
3827, 30, 32, 35, 37syl13anc 1189 . . . . . . . 8  |-  ( ph  ->  ( ( ( R `
 F )  .<_  W  /\  U  .<_  W )  <-> 
( ( R `  F )  .\/  U
)  .<_  W ) )
3924, 25, 38mpbi2and 892 . . . . . . 7  |-  ( ph  ->  ( ( R `  F )  .\/  U
)  .<_  W )
4028, 8atbase 28729 . . . . . . . . 9  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
415, 40syl 17 . . . . . . . 8  |-  ( ph  ->  P  e.  ( Base `  K ) )
4228, 36, 8hlatjcl 28806 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( R `  F )  e.  A  /\  U  e.  A )  ->  (
( R `  F
)  .\/  U )  e.  ( Base `  K
) )
433, 13, 15, 42syl3anc 1187 . . . . . . . 8  |-  ( ph  ->  ( ( R `  F )  .\/  U
)  e.  ( Base `  K ) )
4428, 7lattr 14125 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  ( ( R `  F )  .\/  U
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( P  .<_  ( ( R `  F
)  .\/  U )  /\  ( ( R `  F )  .\/  U
)  .<_  W )  ->  P  .<_  W ) )
4527, 41, 43, 35, 44syl13anc 1189 . . . . . . 7  |-  ( ph  ->  ( ( P  .<_  ( ( R `  F
)  .\/  U )  /\  ( ( R `  F )  .\/  U
)  .<_  W )  ->  P  .<_  W ) )
4639, 45mpan2d 658 . . . . . 6  |-  ( ph  ->  ( P  .<_  ( ( R `  F ) 
.\/  U )  ->  P  .<_  W ) )
4722, 46mtod 170 . . . . 5  |-  ( ph  ->  -.  P  .<_  ( ( R `  F ) 
.\/  U ) )
4820simprd 451 . . . . . . 7  |-  ( ph  ->  V  .<_  W )
4918simprd 451 . . . . . . 7  |-  ( ph  ->  -.  ( F `  P )  .<_  W )
50 nbrne2 4015 . . . . . . 7  |-  ( ( V  .<_  W  /\  -.  ( F `  P
)  .<_  W )  ->  V  =/=  ( F `  P ) )
5148, 49, 50syl2anc 645 . . . . . 6  |-  ( ph  ->  V  =/=  ( F `
 P ) )
5251necomd 2504 . . . . 5  |-  ( ph  ->  ( F `  P
)  =/=  V )
5347, 52jca 520 . . . 4  |-  ( ph  ->  ( -.  P  .<_  ( ( R `  F
)  .\/  U )  /\  ( F `  P
)  =/=  V ) )
5427adantr 453 . . . . . . . 8  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  K  e.  Lat )
5541adantr 453 . . . . . . . 8  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  P  e.  ( Base `  K )
)
5628, 36, 8hlatjcl 28806 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  V  e.  A  /\  U  e.  A )  ->  ( V  .\/  U
)  e.  ( Base `  K ) )
573, 21, 15, 56syl3anc 1187 . . . . . . . . 9  |-  ( ph  ->  ( V  .\/  U
)  e.  ( Base `  K ) )
5857adantr 453 . . . . . . . 8  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  ( V  .\/  U )  e.  (
Base `  K )
)
5935adantr 453 . . . . . . . 8  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  W  e.  ( Base `  K )
)
607, 36, 8hlatlej2 28815 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  V  e.  A )  ->  V  .<_  ( ( F `  P )  .\/  V
) )
613, 19, 21, 60syl3anc 1187 . . . . . . . . . . 11  |-  ( ph  ->  V  .<_  ( ( F `  P )  .\/  V ) )
6261adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  V  .<_  ( ( F `  P
)  .\/  V )
)
63 simpr 449 . . . . . . . . . 10  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)
6462, 63breqtrrd 4023 . . . . . . . . 9  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  V  .<_  ( P  .\/  U ) )
65 dia2dimlem1.uv . . . . . . . . . . . 12  |-  ( ph  ->  U  =/=  V )
6665necomd 2504 . . . . . . . . . . 11  |-  ( ph  ->  V  =/=  U )
677, 36, 8hlatexch2 28835 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( V  e.  A  /\  P  e.  A  /\  U  e.  A
)  /\  V  =/=  U )  ->  ( V  .<_  ( P  .\/  U
)  ->  P  .<_  ( V  .\/  U ) ) )
683, 21, 5, 15, 66, 67syl131anc 1200 . . . . . . . . . 10  |-  ( ph  ->  ( V  .<_  ( P 
.\/  U )  ->  P  .<_  ( V  .\/  U ) ) )
6968adantr 453 . . . . . . . . 9  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  ( V  .<_  ( P  .\/  U
)  ->  P  .<_  ( V  .\/  U ) ) )
7064, 69mpd 16 . . . . . . . 8  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  P  .<_  ( V  .\/  U ) )
7128, 8atbase 28729 . . . . . . . . . . . 12  |-  ( V  e.  A  ->  V  e.  ( Base `  K
) )
7221, 71syl 17 . . . . . . . . . . 11  |-  ( ph  ->  V  e.  ( Base `  K ) )
7328, 7, 36latjle12 14131 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( V  e.  ( Base `  K )  /\  U  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( V  .<_  W  /\  U  .<_  W )  <-> 
( V  .\/  U
)  .<_  W ) )
7427, 72, 32, 35, 73syl13anc 1189 . . . . . . . . . 10  |-  ( ph  ->  ( ( V  .<_  W  /\  U  .<_  W )  <-> 
( V  .\/  U
)  .<_  W ) )
7548, 25, 74mpbi2and 892 . . . . . . . . 9  |-  ( ph  ->  ( V  .\/  U
)  .<_  W )
7675adantr 453 . . . . . . . 8  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  ( V  .\/  U )  .<_  W )
7728, 7, 54, 55, 58, 59, 70, 76lattrd 14127 . . . . . . 7  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  P  .<_  W )
7877ex 425 . . . . . 6  |-  ( ph  ->  ( ( P  .\/  U )  =  ( ( F `  P ) 
.\/  V )  ->  P  .<_  W ) )
7978necon3bd 2458 . . . . 5  |-  ( ph  ->  ( -.  P  .<_  W  ->  ( P  .\/  U )  =/=  ( ( F `  P ) 
.\/  V ) ) )
8022, 79mpd 16 . . . 4  |-  ( ph  ->  ( P  .\/  U
)  =/=  ( ( F `  P ) 
.\/  V ) )
817, 36, 8hlatlej2 28815 . . . . . . 7  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( F `  P )  e.  A )  -> 
( F `  P
)  .<_  ( P  .\/  ( F `  P ) ) )
823, 5, 19, 81syl3anc 1187 . . . . . 6  |-  ( ph  ->  ( F `  P
)  .<_  ( P  .\/  ( F `  P ) ) )
83 dia2dimlem1.m . . . . . . . . . 10  |-  ./\  =  ( meet `  K )
847, 36, 83, 8, 9, 10, 11trlval2 29602 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
)  ./\  W )
)
852, 16, 4, 84syl3anc 1187 . . . . . . . 8  |-  ( ph  ->  ( R `  F
)  =  ( ( P  .\/  ( F `
 P ) ) 
./\  W ) )
8685oveq2d 5808 . . . . . . 7  |-  ( ph  ->  ( P  .\/  ( R `  F )
)  =  ( P 
.\/  ( ( P 
.\/  ( F `  P ) )  ./\  W ) ) )
8728, 36, 8hlatjcl 28806 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( F `  P )  e.  A )  -> 
( P  .\/  ( F `  P )
)  e.  ( Base `  K ) )
883, 5, 19, 87syl3anc 1187 . . . . . . . . 9  |-  ( ph  ->  ( P  .\/  ( F `  P )
)  e.  ( Base `  K ) )
897, 36, 8hlatlej1 28814 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( F `  P )  e.  A )  ->  P  .<_  ( P  .\/  ( F `  P ) ) )
903, 5, 19, 89syl3anc 1187 . . . . . . . . 9  |-  ( ph  ->  P  .<_  ( P  .\/  ( F `  P
) ) )
9128, 7, 36, 83, 8atmod3i1 29303 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  ( P  .\/  ( F `  P )
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  P  .<_  ( P  .\/  ( F `  P )
) )  ->  ( P  .\/  ( ( P 
.\/  ( F `  P ) )  ./\  W ) )  =  ( ( P  .\/  ( F `  P )
)  ./\  ( P  .\/  W ) ) )
923, 5, 88, 35, 90, 91syl131anc 1200 . . . . . . . 8  |-  ( ph  ->  ( P  .\/  (
( P  .\/  ( F `  P )
)  ./\  W )
)  =  ( ( P  .\/  ( F `
 P ) ) 
./\  ( P  .\/  W ) ) )
93 eqid 2258 . . . . . . . . . . . 12  |-  ( 1.
`  K )  =  ( 1. `  K
)
947, 36, 93, 8, 9lhpjat2 29460 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( P  .\/  W
)  =  ( 1.
`  K ) )
952, 4, 94syl2anc 645 . . . . . . . . . 10  |-  ( ph  ->  ( P  .\/  W
)  =  ( 1.
`  K ) )
9695oveq2d 5808 . . . . . . . . 9  |-  ( ph  ->  ( ( P  .\/  ( F `  P ) )  ./\  ( P  .\/  W ) )  =  ( ( P  .\/  ( F `  P ) )  ./\  ( 1. `  K ) ) )
97 hlol 28801 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  OL )
983, 97syl 17 . . . . . . . . . 10  |-  ( ph  ->  K  e.  OL )
9928, 83, 93olm11 28667 . . . . . . . . . 10  |-  ( ( K  e.  OL  /\  ( P  .\/  ( F `
 P ) )  e.  ( Base `  K
) )  ->  (
( P  .\/  ( F `  P )
)  ./\  ( 1. `  K ) )  =  ( P  .\/  ( F `  P )
) )
10098, 88, 99syl2anc 645 . . . . . . . . 9  |-  ( ph  ->  ( ( P  .\/  ( F `  P ) )  ./\  ( 1. `  K ) )  =  ( P  .\/  ( F `  P )
) )
10196, 100eqtrd 2290 . . . . . . . 8  |-  ( ph  ->  ( ( P  .\/  ( F `  P ) )  ./\  ( P  .\/  W ) )  =  ( P  .\/  ( F `  P )
) )
10292, 101eqtrd 2290 . . . . . . 7  |-  ( ph  ->  ( P  .\/  (
( P  .\/  ( F `  P )
)  ./\  W )
)  =  ( P 
.\/  ( F `  P ) ) )
10386, 102eqtrd 2290 . . . . . 6  |-  ( ph  ->  ( P  .\/  ( R `  F )
)  =  ( P 
.\/  ( F `  P ) ) )
10482, 103breqtrrd 4023 . . . . 5  |-  ( ph  ->  ( F `  P
)  .<_  ( P  .\/  ( R `  F ) ) )
105 dia2dimlem1.rf . . . . . . 7  |-  ( ph  ->  ( R `  F
)  .<_  ( U  .\/  V ) )
10636, 8hlatjcom 28807 . . . . . . . 8  |-  ( ( K  e.  HL  /\  U  e.  A  /\  V  e.  A )  ->  ( U  .\/  V
)  =  ( V 
.\/  U ) )
1073, 15, 21, 106syl3anc 1187 . . . . . . 7  |-  ( ph  ->  ( U  .\/  V
)  =  ( V 
.\/  U ) )
108105, 107breqtrd 4021 . . . . . 6  |-  ( ph  ->  ( R `  F
)  .<_  ( V  .\/  U ) )
109 dia2dimlem1.ru . . . . . . 7  |-  ( ph  ->  ( R `  F
)  =/=  U )
1107, 36, 8hlatexch2 28835 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( ( R `  F )  e.  A  /\  V  e.  A  /\  U  e.  A
)  /\  ( R `  F )  =/=  U
)  ->  ( ( R `  F )  .<_  ( V  .\/  U
)  ->  V  .<_  ( ( R `  F
)  .\/  U )
) )
1113, 13, 21, 15, 109, 110syl131anc 1200 . . . . . 6  |-  ( ph  ->  ( ( R `  F )  .<_  ( V 
.\/  U )  ->  V  .<_  ( ( R `
 F )  .\/  U ) ) )
112108, 111mpd 16 . . . . 5  |-  ( ph  ->  V  .<_  ( ( R `  F )  .\/  U ) )
113104, 112jca 520 . . . 4  |-  ( ph  ->  ( ( F `  P )  .<_  ( P 
.\/  ( R `  F ) )  /\  V  .<_  ( ( R `
 F )  .\/  U ) ) )
1147, 36, 83, 8ps-2c 28967 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  ( R `  F )  e.  A )  /\  ( U  e.  A  /\  ( F `  P
)  e.  A  /\  V  e.  A )  /\  ( ( -.  P  .<_  ( ( R `  F )  .\/  U
)  /\  ( F `  P )  =/=  V
)  /\  ( P  .\/  U )  =/=  (
( F `  P
)  .\/  V )  /\  ( ( F `  P )  .<_  ( P 
.\/  ( R `  F ) )  /\  V  .<_  ( ( R `
 F )  .\/  U ) ) ) )  ->  ( ( P 
.\/  U )  ./\  ( ( F `  P )  .\/  V
) )  e.  A
)
1153, 5, 13, 15, 19, 21, 53, 80, 113, 114syl333anc 1219 . . 3  |-  ( ph  ->  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )  e.  A )
1161, 115syl5eqel 2342 . 2  |-  ( ph  ->  Q  e.  A )
11728, 36, 8hlatjcl 28806 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  P  e.  A  /\  U  e.  A )  ->  ( P  .\/  U
)  e.  ( Base `  K ) )
1183, 5, 15, 117syl3anc 1187 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  .\/  U
)  e.  ( Base `  K ) )
11928, 36, 8hlatjcl 28806 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  V  e.  A )  ->  (
( F `  P
)  .\/  V )  e.  ( Base `  K
) )
1203, 19, 21, 119syl3anc 1187 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( F `  P )  .\/  V
)  e.  ( Base `  K ) )
12128, 7, 83latmle1 14145 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  ( P  .\/  U )  e.  ( Base `  K
)  /\  ( ( F `  P )  .\/  V )  e.  (
Base `  K )
)  ->  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V
) )  .<_  ( P 
.\/  U ) )
12227, 118, 120, 121syl3anc 1187 . . . . . . . . . . 11  |-  ( ph  ->  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )  .<_  ( P  .\/  U ) )
1231, 122syl5eqbr 4030 . . . . . . . . . 10  |-  ( ph  ->  Q  .<_  ( P  .\/  U ) )
12428, 8atbase 28729 . . . . . . . . . . . . 13  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
125116, 124syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  Q  e.  ( Base `  K ) )
12628, 7, 83latlem12 14147 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  ( Q  e.  ( Base `  K )  /\  ( P  .\/  U )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
) )  ->  (
( Q  .<_  ( P 
.\/  U )  /\  Q  .<_  W )  <->  Q  .<_  ( ( P  .\/  U
)  ./\  W )
) )
12727, 125, 118, 35, 126syl13anc 1189 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Q  .<_  ( P  .\/  U )  /\  Q  .<_  W )  <-> 
Q  .<_  ( ( P 
.\/  U )  ./\  W ) ) )
128127biimpd 200 . . . . . . . . . 10  |-  ( ph  ->  ( ( Q  .<_  ( P  .\/  U )  /\  Q  .<_  W )  ->  Q  .<_  ( ( P  .\/  U ) 
./\  W ) ) )
129123, 128mpand 659 . . . . . . . . 9  |-  ( ph  ->  ( Q  .<_  W  ->  Q  .<_  ( ( P 
.\/  U )  ./\  W ) ) )
130129imp 420 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  Q  .<_  ( ( P  .\/  U
)  ./\  W )
)
131 eqid 2258 . . . . . . . . . . . . 13  |-  ( 0.
`  K )  =  ( 0. `  K
)
1327, 83, 131, 8, 9lhpmat 29469 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( P  ./\  W
)  =  ( 0.
`  K ) )
1332, 4, 132syl2anc 645 . . . . . . . . . . 11  |-  ( ph  ->  ( P  ./\  W
)  =  ( 0.
`  K ) )
134133oveq1d 5807 . . . . . . . . . 10  |-  ( ph  ->  ( ( P  ./\  W )  .\/  U )  =  ( ( 0.
`  K )  .\/  U ) )
13528, 7, 36, 83, 8atmod4i1 29305 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( U  e.  A  /\  P  e.  ( Base `  K )  /\  W  e.  ( Base `  K ) )  /\  U  .<_  W )  -> 
( ( P  ./\  W )  .\/  U )  =  ( ( P 
.\/  U )  ./\  W ) )
1363, 15, 41, 35, 25, 135syl131anc 1200 . . . . . . . . . 10  |-  ( ph  ->  ( ( P  ./\  W )  .\/  U )  =  ( ( P 
.\/  U )  ./\  W ) )
13728, 36, 131olj02 28666 . . . . . . . . . . 11  |-  ( ( K  e.  OL  /\  U  e.  ( Base `  K ) )  -> 
( ( 0. `  K )  .\/  U
)  =  U )
13898, 32, 137syl2anc 645 . . . . . . . . . 10  |-  ( ph  ->  ( ( 0. `  K )  .\/  U
)  =  U )
139134, 136, 1383eqtr3d 2298 . . . . . . . . 9  |-  ( ph  ->  ( ( P  .\/  U )  ./\  W )  =  U )
140139adantr 453 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  ( ( P  .\/  U )  ./\  W )  =  U )
141130, 140breqtrd 4021 . . . . . . 7  |-  ( (
ph  /\  Q  .<_  W )  ->  Q  .<_  U )
142 hlatl 28800 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  AtLat )
1433, 142syl 17 . . . . . . . . 9  |-  ( ph  ->  K  e.  AtLat )
144143adantr 453 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  K  e.  AtLat
)
145116adantr 453 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  Q  e.  A )
14615adantr 453 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  U  e.  A )
1477, 8atcmp 28751 . . . . . . . 8  |-  ( ( K  e.  AtLat  /\  Q  e.  A  /\  U  e.  A )  ->  ( Q  .<_  U  <->  Q  =  U ) )
148144, 145, 146, 147syl3anc 1187 . . . . . . 7  |-  ( (
ph  /\  Q  .<_  W )  ->  ( Q  .<_  U  <->  Q  =  U
) )
149141, 148mpbid 203 . . . . . 6  |-  ( (
ph  /\  Q  .<_  W )  ->  Q  =  U )
15028, 7, 83latmle2 14146 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  ( P  .\/  U )  e.  ( Base `  K
)  /\  ( ( F `  P )  .\/  V )  e.  (
Base `  K )
)  ->  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V
) )  .<_  ( ( F `  P ) 
.\/  V ) )
15127, 118, 120, 150syl3anc 1187 . . . . . . . . . . 11  |-  ( ph  ->  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )  .<_  ( ( F `  P )  .\/  V
) )
1521, 151syl5eqbr 4030 . . . . . . . . . 10  |-  ( ph  ->  Q  .<_  ( ( F `  P )  .\/  V ) )
15328, 7, 83latlem12 14147 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  ( Q  e.  ( Base `  K )  /\  ( ( F `  P )  .\/  V
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( Q  .<_  ( ( F `  P
)  .\/  V )  /\  Q  .<_  W )  <-> 
Q  .<_  ( ( ( F `  P ) 
.\/  V )  ./\  W ) ) )
15427, 125, 120, 35, 153syl13anc 1189 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Q  .<_  ( ( F `  P
)  .\/  V )  /\  Q  .<_  W )  <-> 
Q  .<_  ( ( ( F `  P ) 
.\/  V )  ./\  W ) ) )
155154biimpd 200 . . . . . . . . . 10  |-  ( ph  ->  ( ( Q  .<_  ( ( F `  P
)  .\/  V )  /\  Q  .<_  W )  ->  Q  .<_  ( ( ( F `  P
)  .\/  V )  ./\  W ) ) )
156152, 155mpand 659 . . . . . . . . 9  |-  ( ph  ->  ( Q  .<_  W  ->  Q  .<_  ( ( ( F `  P ) 
.\/  V )  ./\  W ) ) )
157156imp 420 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  Q  .<_  ( ( ( F `  P )  .\/  V
)  ./\  W )
)
1587, 83, 131, 8, 9lhpmat 29469 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F `
 P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )  -> 
( ( F `  P )  ./\  W
)  =  ( 0.
`  K ) )
1592, 18, 158syl2anc 645 . . . . . . . . . . 11  |-  ( ph  ->  ( ( F `  P )  ./\  W
)  =  ( 0.
`  K ) )
160159oveq1d 5807 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( F `
 P )  ./\  W )  .\/  V )  =  ( ( 0.
`  K )  .\/  V ) )
16128, 8atbase 28729 . . . . . . . . . . . 12  |-  ( ( F `  P )  e.  A  ->  ( F `  P )  e.  ( Base `  K
) )
16219, 161syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  P
)  e.  ( Base `  K ) )
16328, 7, 36, 83, 8atmod4i1 29305 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( V  e.  A  /\  ( F `  P
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  V  .<_  W )  ->  (
( ( F `  P )  ./\  W
)  .\/  V )  =  ( ( ( F `  P ) 
.\/  V )  ./\  W ) )
1643, 21, 162, 35, 48, 163syl131anc 1200 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( F `
 P )  ./\  W )  .\/  V )  =  ( ( ( F `  P ) 
.\/  V )  ./\  W ) )
16528, 36, 131olj02 28666 . . . . . . . . . . 11  |-  ( ( K  e.  OL  /\  V  e.  ( Base `  K ) )  -> 
( ( 0. `  K )  .\/  V
)  =  V )
16698, 72, 165syl2anc 645 . . . . . . . . . 10  |-  ( ph  ->  ( ( 0. `  K )  .\/  V
)  =  V )
167160, 164, 1663eqtr3d 2298 . . . . . . . . 9  |-  ( ph  ->  ( ( ( F `
 P )  .\/  V )  ./\  W )  =  V )
168167adantr 453 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  ( (
( F `  P
)  .\/  V )  ./\  W )  =  V )
169157, 168breqtrd 4021 . . . . . . 7  |-  ( (
ph  /\  Q  .<_  W )  ->  Q  .<_  V )
17021adantr 453 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  V  e.  A )
1717, 8atcmp 28751 . . . . . . . 8  |-  ( ( K  e.  AtLat  /\  Q  e.  A  /\  V  e.  A )  ->  ( Q  .<_  V  <->  Q  =  V ) )
172144, 145, 170, 171syl3anc 1187 . . . . . . 7  |-  ( (
ph  /\  Q  .<_  W )  ->  ( Q  .<_  V  <->  Q  =  V
) )
173169, 172mpbid 203 . . . . . 6  |-  ( (
ph  /\  Q  .<_  W )  ->  Q  =  V )
174149, 173eqtr3d 2292 . . . . 5  |-  ( (
ph  /\  Q  .<_  W )  ->  U  =  V )
175174ex 425 . . . 4  |-  ( ph  ->  ( Q  .<_  W  ->  U  =  V )
)
176175necon3ad 2457 . . 3  |-  ( ph  ->  ( U  =/=  V  ->  -.  Q  .<_  W ) )
17765, 176mpd 16 . 2  |-  ( ph  ->  -.  Q  .<_  W )
178116, 177jca 520 1  |-  ( ph  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2421   class class class wbr 3997   ` cfv 4673  (class class class)co 5792   Basecbs 13111   lecple 13178   joincjn 14041   meetcmee 14042   0.cp0 14106   1.cp1 14107   Latclat 14114   OLcol 28614   Atomscatm 28703   AtLatcal 28704   HLchlt 28790   LHypclh 29423   LTrncltrn 29540   trLctrl 29597
This theorem is referenced by:  dia2dimlem3  30506  dia2dimlem6  30509
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-undef 6264  df-riota 6272  df-map 6742  df-poset 14043  df-plt 14055  df-lub 14071  df-glb 14072  df-join 14073  df-meet 14074  df-p0 14108  df-p1 14109  df-lat 14115  df-clat 14177  df-oposet 28616  df-ol 28618  df-oml 28619  df-covers 28706  df-ats 28707  df-atl 28738  df-cvlat 28762  df-hlat 28791  df-llines 28937  df-psubsp 28942  df-pmap 28943  df-padd 29235  df-lhyp 29427  df-laut 29428  df-ldil 29543  df-ltrn 29544  df-trl 29598
  Copyright terms: Public domain W3C validator