Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem1 Unicode version

Theorem dia2dimlem1 31327
Description: Lemma for dia2dim 31340. Show properties of the auxiliary atom  Q. Part of proof of Lemma M in [Crawley] p. 121 line 3. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem1.l  |-  .<_  =  ( le `  K )
dia2dimlem1.j  |-  .\/  =  ( join `  K )
dia2dimlem1.m  |-  ./\  =  ( meet `  K )
dia2dimlem1.a  |-  A  =  ( Atoms `  K )
dia2dimlem1.h  |-  H  =  ( LHyp `  K
)
dia2dimlem1.t  |-  T  =  ( ( LTrn `  K
) `  W )
dia2dimlem1.r  |-  R  =  ( ( trL `  K
) `  W )
dia2dimlem1.q  |-  Q  =  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )
dia2dimlem1.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
dia2dimlem1.u  |-  ( ph  ->  ( U  e.  A  /\  U  .<_  W ) )
dia2dimlem1.v  |-  ( ph  ->  ( V  e.  A  /\  V  .<_  W ) )
dia2dimlem1.p  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
dia2dimlem1.f  |-  ( ph  ->  ( F  e.  T  /\  ( F `  P
)  =/=  P ) )
dia2dimlem1.rf  |-  ( ph  ->  ( R `  F
)  .<_  ( U  .\/  V ) )
dia2dimlem1.uv  |-  ( ph  ->  U  =/=  V )
dia2dimlem1.ru  |-  ( ph  ->  ( R `  F
)  =/=  U )
Assertion
Ref Expression
dia2dimlem1  |-  ( ph  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )

Proof of Theorem dia2dimlem1
StepHypRef Expression
1 dia2dimlem1.q . . 3  |-  Q  =  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )
2 dia2dimlem1.k . . . . 5  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
32simpld 445 . . . 4  |-  ( ph  ->  K  e.  HL )
4 dia2dimlem1.p . . . . 5  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
54simpld 445 . . . 4  |-  ( ph  ->  P  e.  A )
6 dia2dimlem1.f . . . . 5  |-  ( ph  ->  ( F  e.  T  /\  ( F `  P
)  =/=  P ) )
7 dia2dimlem1.l . . . . . 6  |-  .<_  =  ( le `  K )
8 dia2dimlem1.a . . . . . 6  |-  A  =  ( Atoms `  K )
9 dia2dimlem1.h . . . . . 6  |-  H  =  ( LHyp `  K
)
10 dia2dimlem1.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
11 dia2dimlem1.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
127, 8, 9, 10, 11trlat 30431 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  e.  A
)
132, 4, 6, 12syl3anc 1182 . . . 4  |-  ( ph  ->  ( R `  F
)  e.  A )
14 dia2dimlem1.u . . . . 5  |-  ( ph  ->  ( U  e.  A  /\  U  .<_  W ) )
1514simpld 445 . . . 4  |-  ( ph  ->  U  e.  A )
166simpld 445 . . . . . 6  |-  ( ph  ->  F  e.  T )
177, 8, 9, 10ltrnel 30401 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
182, 16, 4, 17syl3anc 1182 . . . . 5  |-  ( ph  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
1918simpld 445 . . . 4  |-  ( ph  ->  ( F `  P
)  e.  A )
20 dia2dimlem1.v . . . . 5  |-  ( ph  ->  ( V  e.  A  /\  V  .<_  W ) )
2120simpld 445 . . . 4  |-  ( ph  ->  V  e.  A )
224simprd 449 . . . . . 6  |-  ( ph  ->  -.  P  .<_  W )
237, 9, 10, 11trlle 30446 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  .<_  W )
242, 16, 23syl2anc 642 . . . . . . . 8  |-  ( ph  ->  ( R `  F
)  .<_  W )
2514simprd 449 . . . . . . . 8  |-  ( ph  ->  U  .<_  W )
26 hllat 29626 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  Lat )
273, 26syl 15 . . . . . . . . 9  |-  ( ph  ->  K  e.  Lat )
28 eqid 2285 . . . . . . . . . . 11  |-  ( Base `  K )  =  (
Base `  K )
2928, 8atbase 29552 . . . . . . . . . 10  |-  ( ( R `  F )  e.  A  ->  ( R `  F )  e.  ( Base `  K
) )
3013, 29syl 15 . . . . . . . . 9  |-  ( ph  ->  ( R `  F
)  e.  ( Base `  K ) )
3128, 8atbase 29552 . . . . . . . . . 10  |-  ( U  e.  A  ->  U  e.  ( Base `  K
) )
3215, 31syl 15 . . . . . . . . 9  |-  ( ph  ->  U  e.  ( Base `  K ) )
332simprd 449 . . . . . . . . . 10  |-  ( ph  ->  W  e.  H )
3428, 9lhpbase 30260 . . . . . . . . . 10  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
3533, 34syl 15 . . . . . . . . 9  |-  ( ph  ->  W  e.  ( Base `  K ) )
36 dia2dimlem1.j . . . . . . . . . 10  |-  .\/  =  ( join `  K )
3728, 7, 36latjle12 14170 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( ( R `  F )  e.  (
Base `  K )  /\  U  e.  ( Base `  K )  /\  W  e.  ( Base `  K ) ) )  ->  ( ( ( R `  F ) 
.<_  W  /\  U  .<_  W )  <->  ( ( R `
 F )  .\/  U )  .<_  W )
)
3827, 30, 32, 35, 37syl13anc 1184 . . . . . . . 8  |-  ( ph  ->  ( ( ( R `
 F )  .<_  W  /\  U  .<_  W )  <-> 
( ( R `  F )  .\/  U
)  .<_  W ) )
3924, 25, 38mpbi2and 887 . . . . . . 7  |-  ( ph  ->  ( ( R `  F )  .\/  U
)  .<_  W )
4028, 8atbase 29552 . . . . . . . . 9  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
415, 40syl 15 . . . . . . . 8  |-  ( ph  ->  P  e.  ( Base `  K ) )
4228, 36, 8hlatjcl 29629 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( R `  F )  e.  A  /\  U  e.  A )  ->  (
( R `  F
)  .\/  U )  e.  ( Base `  K
) )
433, 13, 15, 42syl3anc 1182 . . . . . . . 8  |-  ( ph  ->  ( ( R `  F )  .\/  U
)  e.  ( Base `  K ) )
4428, 7lattr 14164 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  ( ( R `  F )  .\/  U
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( P  .<_  ( ( R `  F
)  .\/  U )  /\  ( ( R `  F )  .\/  U
)  .<_  W )  ->  P  .<_  W ) )
4527, 41, 43, 35, 44syl13anc 1184 . . . . . . 7  |-  ( ph  ->  ( ( P  .<_  ( ( R `  F
)  .\/  U )  /\  ( ( R `  F )  .\/  U
)  .<_  W )  ->  P  .<_  W ) )
4639, 45mpan2d 655 . . . . . 6  |-  ( ph  ->  ( P  .<_  ( ( R `  F ) 
.\/  U )  ->  P  .<_  W ) )
4722, 46mtod 168 . . . . 5  |-  ( ph  ->  -.  P  .<_  ( ( R `  F ) 
.\/  U ) )
4820simprd 449 . . . . . . 7  |-  ( ph  ->  V  .<_  W )
4918simprd 449 . . . . . . 7  |-  ( ph  ->  -.  ( F `  P )  .<_  W )
50 nbrne2 4043 . . . . . . 7  |-  ( ( V  .<_  W  /\  -.  ( F `  P
)  .<_  W )  ->  V  =/=  ( F `  P ) )
5148, 49, 50syl2anc 642 . . . . . 6  |-  ( ph  ->  V  =/=  ( F `
 P ) )
5251necomd 2531 . . . . 5  |-  ( ph  ->  ( F `  P
)  =/=  V )
5347, 52jca 518 . . . 4  |-  ( ph  ->  ( -.  P  .<_  ( ( R `  F
)  .\/  U )  /\  ( F `  P
)  =/=  V ) )
5427adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  K  e.  Lat )
5541adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  P  e.  ( Base `  K )
)
5628, 36, 8hlatjcl 29629 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  V  e.  A  /\  U  e.  A )  ->  ( V  .\/  U
)  e.  ( Base `  K ) )
573, 21, 15, 56syl3anc 1182 . . . . . . . . 9  |-  ( ph  ->  ( V  .\/  U
)  e.  ( Base `  K ) )
5857adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  ( V  .\/  U )  e.  (
Base `  K )
)
5935adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  W  e.  ( Base `  K )
)
607, 36, 8hlatlej2 29638 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  V  e.  A )  ->  V  .<_  ( ( F `  P )  .\/  V
) )
613, 19, 21, 60syl3anc 1182 . . . . . . . . . . 11  |-  ( ph  ->  V  .<_  ( ( F `  P )  .\/  V ) )
6261adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  V  .<_  ( ( F `  P
)  .\/  V )
)
63 simpr 447 . . . . . . . . . 10  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)
6462, 63breqtrrd 4051 . . . . . . . . 9  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  V  .<_  ( P  .\/  U ) )
65 dia2dimlem1.uv . . . . . . . . . . . 12  |-  ( ph  ->  U  =/=  V )
6665necomd 2531 . . . . . . . . . . 11  |-  ( ph  ->  V  =/=  U )
677, 36, 8hlatexch2 29658 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( V  e.  A  /\  P  e.  A  /\  U  e.  A
)  /\  V  =/=  U )  ->  ( V  .<_  ( P  .\/  U
)  ->  P  .<_  ( V  .\/  U ) ) )
683, 21, 5, 15, 66, 67syl131anc 1195 . . . . . . . . . 10  |-  ( ph  ->  ( V  .<_  ( P 
.\/  U )  ->  P  .<_  ( V  .\/  U ) ) )
6968adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  ( V  .<_  ( P  .\/  U
)  ->  P  .<_  ( V  .\/  U ) ) )
7064, 69mpd 14 . . . . . . . 8  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  P  .<_  ( V  .\/  U ) )
7128, 8atbase 29552 . . . . . . . . . . . 12  |-  ( V  e.  A  ->  V  e.  ( Base `  K
) )
7221, 71syl 15 . . . . . . . . . . 11  |-  ( ph  ->  V  e.  ( Base `  K ) )
7328, 7, 36latjle12 14170 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( V  e.  ( Base `  K )  /\  U  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( V  .<_  W  /\  U  .<_  W )  <-> 
( V  .\/  U
)  .<_  W ) )
7427, 72, 32, 35, 73syl13anc 1184 . . . . . . . . . 10  |-  ( ph  ->  ( ( V  .<_  W  /\  U  .<_  W )  <-> 
( V  .\/  U
)  .<_  W ) )
7548, 25, 74mpbi2and 887 . . . . . . . . 9  |-  ( ph  ->  ( V  .\/  U
)  .<_  W )
7675adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  ( V  .\/  U )  .<_  W )
7728, 7, 54, 55, 58, 59, 70, 76lattrd 14166 . . . . . . 7  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  P  .<_  W )
7877ex 423 . . . . . 6  |-  ( ph  ->  ( ( P  .\/  U )  =  ( ( F `  P ) 
.\/  V )  ->  P  .<_  W ) )
7978necon3bd 2485 . . . . 5  |-  ( ph  ->  ( -.  P  .<_  W  ->  ( P  .\/  U )  =/=  ( ( F `  P ) 
.\/  V ) ) )
8022, 79mpd 14 . . . 4  |-  ( ph  ->  ( P  .\/  U
)  =/=  ( ( F `  P ) 
.\/  V ) )
817, 36, 8hlatlej2 29638 . . . . . . 7  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( F `  P )  e.  A )  -> 
( F `  P
)  .<_  ( P  .\/  ( F `  P ) ) )
823, 5, 19, 81syl3anc 1182 . . . . . 6  |-  ( ph  ->  ( F `  P
)  .<_  ( P  .\/  ( F `  P ) ) )
83 dia2dimlem1.m . . . . . . . . . 10  |-  ./\  =  ( meet `  K )
847, 36, 83, 8, 9, 10, 11trlval2 30425 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
)  ./\  W )
)
852, 16, 4, 84syl3anc 1182 . . . . . . . 8  |-  ( ph  ->  ( R `  F
)  =  ( ( P  .\/  ( F `
 P ) ) 
./\  W ) )
8685oveq2d 5876 . . . . . . 7  |-  ( ph  ->  ( P  .\/  ( R `  F )
)  =  ( P 
.\/  ( ( P 
.\/  ( F `  P ) )  ./\  W ) ) )
8728, 36, 8hlatjcl 29629 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( F `  P )  e.  A )  -> 
( P  .\/  ( F `  P )
)  e.  ( Base `  K ) )
883, 5, 19, 87syl3anc 1182 . . . . . . . . 9  |-  ( ph  ->  ( P  .\/  ( F `  P )
)  e.  ( Base `  K ) )
897, 36, 8hlatlej1 29637 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( F `  P )  e.  A )  ->  P  .<_  ( P  .\/  ( F `  P ) ) )
903, 5, 19, 89syl3anc 1182 . . . . . . . . 9  |-  ( ph  ->  P  .<_  ( P  .\/  ( F `  P
) ) )
9128, 7, 36, 83, 8atmod3i1 30126 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  ( P  .\/  ( F `  P )
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  P  .<_  ( P  .\/  ( F `  P )
) )  ->  ( P  .\/  ( ( P 
.\/  ( F `  P ) )  ./\  W ) )  =  ( ( P  .\/  ( F `  P )
)  ./\  ( P  .\/  W ) ) )
923, 5, 88, 35, 90, 91syl131anc 1195 . . . . . . . 8  |-  ( ph  ->  ( P  .\/  (
( P  .\/  ( F `  P )
)  ./\  W )
)  =  ( ( P  .\/  ( F `
 P ) ) 
./\  ( P  .\/  W ) ) )
93 eqid 2285 . . . . . . . . . . . 12  |-  ( 1.
`  K )  =  ( 1. `  K
)
947, 36, 93, 8, 9lhpjat2 30283 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( P  .\/  W
)  =  ( 1.
`  K ) )
952, 4, 94syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  ( P  .\/  W
)  =  ( 1.
`  K ) )
9695oveq2d 5876 . . . . . . . . 9  |-  ( ph  ->  ( ( P  .\/  ( F `  P ) )  ./\  ( P  .\/  W ) )  =  ( ( P  .\/  ( F `  P ) )  ./\  ( 1. `  K ) ) )
97 hlol 29624 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  OL )
983, 97syl 15 . . . . . . . . . 10  |-  ( ph  ->  K  e.  OL )
9928, 83, 93olm11 29490 . . . . . . . . . 10  |-  ( ( K  e.  OL  /\  ( P  .\/  ( F `
 P ) )  e.  ( Base `  K
) )  ->  (
( P  .\/  ( F `  P )
)  ./\  ( 1. `  K ) )  =  ( P  .\/  ( F `  P )
) )
10098, 88, 99syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  ( ( P  .\/  ( F `  P ) )  ./\  ( 1. `  K ) )  =  ( P  .\/  ( F `  P )
) )
10196, 100eqtrd 2317 . . . . . . . 8  |-  ( ph  ->  ( ( P  .\/  ( F `  P ) )  ./\  ( P  .\/  W ) )  =  ( P  .\/  ( F `  P )
) )
10292, 101eqtrd 2317 . . . . . . 7  |-  ( ph  ->  ( P  .\/  (
( P  .\/  ( F `  P )
)  ./\  W )
)  =  ( P 
.\/  ( F `  P ) ) )
10386, 102eqtrd 2317 . . . . . 6  |-  ( ph  ->  ( P  .\/  ( R `  F )
)  =  ( P 
.\/  ( F `  P ) ) )
10482, 103breqtrrd 4051 . . . . 5  |-  ( ph  ->  ( F `  P
)  .<_  ( P  .\/  ( R `  F ) ) )
105 dia2dimlem1.rf . . . . . . 7  |-  ( ph  ->  ( R `  F
)  .<_  ( U  .\/  V ) )
10636, 8hlatjcom 29630 . . . . . . . 8  |-  ( ( K  e.  HL  /\  U  e.  A  /\  V  e.  A )  ->  ( U  .\/  V
)  =  ( V 
.\/  U ) )
1073, 15, 21, 106syl3anc 1182 . . . . . . 7  |-  ( ph  ->  ( U  .\/  V
)  =  ( V 
.\/  U ) )
108105, 107breqtrd 4049 . . . . . 6  |-  ( ph  ->  ( R `  F
)  .<_  ( V  .\/  U ) )
109 dia2dimlem1.ru . . . . . . 7  |-  ( ph  ->  ( R `  F
)  =/=  U )
1107, 36, 8hlatexch2 29658 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( ( R `  F )  e.  A  /\  V  e.  A  /\  U  e.  A
)  /\  ( R `  F )  =/=  U
)  ->  ( ( R `  F )  .<_  ( V  .\/  U
)  ->  V  .<_  ( ( R `  F
)  .\/  U )
) )
1113, 13, 21, 15, 109, 110syl131anc 1195 . . . . . 6  |-  ( ph  ->  ( ( R `  F )  .<_  ( V 
.\/  U )  ->  V  .<_  ( ( R `
 F )  .\/  U ) ) )
112108, 111mpd 14 . . . . 5  |-  ( ph  ->  V  .<_  ( ( R `  F )  .\/  U ) )
113104, 112jca 518 . . . 4  |-  ( ph  ->  ( ( F `  P )  .<_  ( P 
.\/  ( R `  F ) )  /\  V  .<_  ( ( R `
 F )  .\/  U ) ) )
1147, 36, 83, 8ps-2c 29790 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  ( R `  F )  e.  A )  /\  ( U  e.  A  /\  ( F `  P
)  e.  A  /\  V  e.  A )  /\  ( ( -.  P  .<_  ( ( R `  F )  .\/  U
)  /\  ( F `  P )  =/=  V
)  /\  ( P  .\/  U )  =/=  (
( F `  P
)  .\/  V )  /\  ( ( F `  P )  .<_  ( P 
.\/  ( R `  F ) )  /\  V  .<_  ( ( R `
 F )  .\/  U ) ) ) )  ->  ( ( P 
.\/  U )  ./\  ( ( F `  P )  .\/  V
) )  e.  A
)
1153, 5, 13, 15, 19, 21, 53, 80, 113, 114syl333anc 1214 . . 3  |-  ( ph  ->  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )  e.  A )
1161, 115syl5eqel 2369 . 2  |-  ( ph  ->  Q  e.  A )
11728, 36, 8hlatjcl 29629 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  P  e.  A  /\  U  e.  A )  ->  ( P  .\/  U
)  e.  ( Base `  K ) )
1183, 5, 15, 117syl3anc 1182 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  .\/  U
)  e.  ( Base `  K ) )
11928, 36, 8hlatjcl 29629 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  V  e.  A )  ->  (
( F `  P
)  .\/  V )  e.  ( Base `  K
) )
1203, 19, 21, 119syl3anc 1182 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( F `  P )  .\/  V
)  e.  ( Base `  K ) )
12128, 7, 83latmle1 14184 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  ( P  .\/  U )  e.  ( Base `  K
)  /\  ( ( F `  P )  .\/  V )  e.  (
Base `  K )
)  ->  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V
) )  .<_  ( P 
.\/  U ) )
12227, 118, 120, 121syl3anc 1182 . . . . . . . . . . 11  |-  ( ph  ->  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )  .<_  ( P  .\/  U ) )
1231, 122syl5eqbr 4058 . . . . . . . . . 10  |-  ( ph  ->  Q  .<_  ( P  .\/  U ) )
12428, 8atbase 29552 . . . . . . . . . . . . 13  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
125116, 124syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  Q  e.  ( Base `  K ) )
12628, 7, 83latlem12 14186 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  ( Q  e.  ( Base `  K )  /\  ( P  .\/  U )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
) )  ->  (
( Q  .<_  ( P 
.\/  U )  /\  Q  .<_  W )  <->  Q  .<_  ( ( P  .\/  U
)  ./\  W )
) )
12727, 125, 118, 35, 126syl13anc 1184 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Q  .<_  ( P  .\/  U )  /\  Q  .<_  W )  <-> 
Q  .<_  ( ( P 
.\/  U )  ./\  W ) ) )
128127biimpd 198 . . . . . . . . . 10  |-  ( ph  ->  ( ( Q  .<_  ( P  .\/  U )  /\  Q  .<_  W )  ->  Q  .<_  ( ( P  .\/  U ) 
./\  W ) ) )
129123, 128mpand 656 . . . . . . . . 9  |-  ( ph  ->  ( Q  .<_  W  ->  Q  .<_  ( ( P 
.\/  U )  ./\  W ) ) )
130129imp 418 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  Q  .<_  ( ( P  .\/  U
)  ./\  W )
)
131 eqid 2285 . . . . . . . . . . . . 13  |-  ( 0.
`  K )  =  ( 0. `  K
)
1327, 83, 131, 8, 9lhpmat 30292 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( P  ./\  W
)  =  ( 0.
`  K ) )
1332, 4, 132syl2anc 642 . . . . . . . . . . 11  |-  ( ph  ->  ( P  ./\  W
)  =  ( 0.
`  K ) )
134133oveq1d 5875 . . . . . . . . . 10  |-  ( ph  ->  ( ( P  ./\  W )  .\/  U )  =  ( ( 0.
`  K )  .\/  U ) )
13528, 7, 36, 83, 8atmod4i1 30128 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( U  e.  A  /\  P  e.  ( Base `  K )  /\  W  e.  ( Base `  K ) )  /\  U  .<_  W )  -> 
( ( P  ./\  W )  .\/  U )  =  ( ( P 
.\/  U )  ./\  W ) )
1363, 15, 41, 35, 25, 135syl131anc 1195 . . . . . . . . . 10  |-  ( ph  ->  ( ( P  ./\  W )  .\/  U )  =  ( ( P 
.\/  U )  ./\  W ) )
13728, 36, 131olj02 29489 . . . . . . . . . . 11  |-  ( ( K  e.  OL  /\  U  e.  ( Base `  K ) )  -> 
( ( 0. `  K )  .\/  U
)  =  U )
13898, 32, 137syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  ( ( 0. `  K )  .\/  U
)  =  U )
139134, 136, 1383eqtr3d 2325 . . . . . . . . 9  |-  ( ph  ->  ( ( P  .\/  U )  ./\  W )  =  U )
140139adantr 451 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  ( ( P  .\/  U )  ./\  W )  =  U )
141130, 140breqtrd 4049 . . . . . . 7  |-  ( (
ph  /\  Q  .<_  W )  ->  Q  .<_  U )
142 hlatl 29623 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  AtLat )
1433, 142syl 15 . . . . . . . . 9  |-  ( ph  ->  K  e.  AtLat )
144143adantr 451 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  K  e.  AtLat
)
145116adantr 451 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  Q  e.  A )
14615adantr 451 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  U  e.  A )
1477, 8atcmp 29574 . . . . . . . 8  |-  ( ( K  e.  AtLat  /\  Q  e.  A  /\  U  e.  A )  ->  ( Q  .<_  U  <->  Q  =  U ) )
148144, 145, 146, 147syl3anc 1182 . . . . . . 7  |-  ( (
ph  /\  Q  .<_  W )  ->  ( Q  .<_  U  <->  Q  =  U
) )
149141, 148mpbid 201 . . . . . 6  |-  ( (
ph  /\  Q  .<_  W )  ->  Q  =  U )
15028, 7, 83latmle2 14185 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  ( P  .\/  U )  e.  ( Base `  K
)  /\  ( ( F `  P )  .\/  V )  e.  (
Base `  K )
)  ->  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V
) )  .<_  ( ( F `  P ) 
.\/  V ) )
15127, 118, 120, 150syl3anc 1182 . . . . . . . . . . 11  |-  ( ph  ->  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )  .<_  ( ( F `  P )  .\/  V
) )
1521, 151syl5eqbr 4058 . . . . . . . . . 10  |-  ( ph  ->  Q  .<_  ( ( F `  P )  .\/  V ) )
15328, 7, 83latlem12 14186 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  ( Q  e.  ( Base `  K )  /\  ( ( F `  P )  .\/  V
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( Q  .<_  ( ( F `  P
)  .\/  V )  /\  Q  .<_  W )  <-> 
Q  .<_  ( ( ( F `  P ) 
.\/  V )  ./\  W ) ) )
15427, 125, 120, 35, 153syl13anc 1184 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Q  .<_  ( ( F `  P
)  .\/  V )  /\  Q  .<_  W )  <-> 
Q  .<_  ( ( ( F `  P ) 
.\/  V )  ./\  W ) ) )
155154biimpd 198 . . . . . . . . . 10  |-  ( ph  ->  ( ( Q  .<_  ( ( F `  P
)  .\/  V )  /\  Q  .<_  W )  ->  Q  .<_  ( ( ( F `  P
)  .\/  V )  ./\  W ) ) )
156152, 155mpand 656 . . . . . . . . 9  |-  ( ph  ->  ( Q  .<_  W  ->  Q  .<_  ( ( ( F `  P ) 
.\/  V )  ./\  W ) ) )
157156imp 418 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  Q  .<_  ( ( ( F `  P )  .\/  V
)  ./\  W )
)
1587, 83, 131, 8, 9lhpmat 30292 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F `
 P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )  -> 
( ( F `  P )  ./\  W
)  =  ( 0.
`  K ) )
1592, 18, 158syl2anc 642 . . . . . . . . . . 11  |-  ( ph  ->  ( ( F `  P )  ./\  W
)  =  ( 0.
`  K ) )
160159oveq1d 5875 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( F `
 P )  ./\  W )  .\/  V )  =  ( ( 0.
`  K )  .\/  V ) )
16128, 8atbase 29552 . . . . . . . . . . . 12  |-  ( ( F `  P )  e.  A  ->  ( F `  P )  e.  ( Base `  K
) )
16219, 161syl 15 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  P
)  e.  ( Base `  K ) )
16328, 7, 36, 83, 8atmod4i1 30128 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( V  e.  A  /\  ( F `  P
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  V  .<_  W )  ->  (
( ( F `  P )  ./\  W
)  .\/  V )  =  ( ( ( F `  P ) 
.\/  V )  ./\  W ) )
1643, 21, 162, 35, 48, 163syl131anc 1195 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( F `
 P )  ./\  W )  .\/  V )  =  ( ( ( F `  P ) 
.\/  V )  ./\  W ) )
16528, 36, 131olj02 29489 . . . . . . . . . . 11  |-  ( ( K  e.  OL  /\  V  e.  ( Base `  K ) )  -> 
( ( 0. `  K )  .\/  V
)  =  V )
16698, 72, 165syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  ( ( 0. `  K )  .\/  V
)  =  V )
167160, 164, 1663eqtr3d 2325 . . . . . . . . 9  |-  ( ph  ->  ( ( ( F `
 P )  .\/  V )  ./\  W )  =  V )
168167adantr 451 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  ( (
( F `  P
)  .\/  V )  ./\  W )  =  V )
169157, 168breqtrd 4049 . . . . . . 7  |-  ( (
ph  /\  Q  .<_  W )  ->  Q  .<_  V )
17021adantr 451 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  V  e.  A )
1717, 8atcmp 29574 . . . . . . . 8  |-  ( ( K  e.  AtLat  /\  Q  e.  A  /\  V  e.  A )  ->  ( Q  .<_  V  <->  Q  =  V ) )
172144, 145, 170, 171syl3anc 1182 . . . . . . 7  |-  ( (
ph  /\  Q  .<_  W )  ->  ( Q  .<_  V  <->  Q  =  V
) )
173169, 172mpbid 201 . . . . . 6  |-  ( (
ph  /\  Q  .<_  W )  ->  Q  =  V )
174149, 173eqtr3d 2319 . . . . 5  |-  ( (
ph  /\  Q  .<_  W )  ->  U  =  V )
175174ex 423 . . . 4  |-  ( ph  ->  ( Q  .<_  W  ->  U  =  V )
)
176175necon3ad 2484 . . 3  |-  ( ph  ->  ( U  =/=  V  ->  -.  Q  .<_  W ) )
17765, 176mpd 14 . 2  |-  ( ph  ->  -.  Q  .<_  W )
178116, 177jca 518 1  |-  ( ph  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1625    e. wcel 1686    =/= wne 2448   class class class wbr 4025   ` cfv 5257  (class class class)co 5860   Basecbs 13150   lecple 13217   joincjn 14080   meetcmee 14081   0.cp0 14145   1.cp1 14146   Latclat 14153   OLcol 29437   Atomscatm 29526   AtLatcal 29527   HLchlt 29613   LHypclh 30246   LTrncltrn 30363   trLctrl 30420
This theorem is referenced by:  dia2dimlem3  31329  dia2dimlem6  31332
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-undef 6300  df-riota 6306  df-map 6776  df-poset 14082  df-plt 14094  df-lub 14110  df-glb 14111  df-join 14112  df-meet 14113  df-p0 14147  df-p1 14148  df-lat 14154  df-clat 14216  df-oposet 29439  df-ol 29441  df-oml 29442  df-covers 29529  df-ats 29530  df-atl 29561  df-cvlat 29585  df-hlat 29614  df-llines 29760  df-psubsp 29765  df-pmap 29766  df-padd 30058  df-lhyp 30250  df-laut 30251  df-ldil 30366  df-ltrn 30367  df-trl 30421
  Copyright terms: Public domain W3C validator