Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem1 Unicode version

Theorem dia2dimlem1 30384
Description: Lemma for dia2dim 30397. Show properties of the auxiliary atom  Q. Part of proof of Lemma M in [Crawley] p. 121 line 3. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem1.l  |-  .<_  =  ( le `  K )
dia2dimlem1.j  |-  .\/  =  ( join `  K )
dia2dimlem1.m  |-  ./\  =  ( meet `  K )
dia2dimlem1.a  |-  A  =  ( Atoms `  K )
dia2dimlem1.h  |-  H  =  ( LHyp `  K
)
dia2dimlem1.t  |-  T  =  ( ( LTrn `  K
) `  W )
dia2dimlem1.r  |-  R  =  ( ( trL `  K
) `  W )
dia2dimlem1.q  |-  Q  =  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )
dia2dimlem1.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
dia2dimlem1.u  |-  ( ph  ->  ( U  e.  A  /\  U  .<_  W ) )
dia2dimlem1.v  |-  ( ph  ->  ( V  e.  A  /\  V  .<_  W ) )
dia2dimlem1.p  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
dia2dimlem1.f  |-  ( ph  ->  ( F  e.  T  /\  ( F `  P
)  =/=  P ) )
dia2dimlem1.rf  |-  ( ph  ->  ( R `  F
)  .<_  ( U  .\/  V ) )
dia2dimlem1.uv  |-  ( ph  ->  U  =/=  V )
dia2dimlem1.ru  |-  ( ph  ->  ( R `  F
)  =/=  U )
Assertion
Ref Expression
dia2dimlem1  |-  ( ph  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )

Proof of Theorem dia2dimlem1
StepHypRef Expression
1 dia2dimlem1.q . . 3  |-  Q  =  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )
2 dia2dimlem1.k . . . . 5  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
32simpld 447 . . . 4  |-  ( ph  ->  K  e.  HL )
4 dia2dimlem1.p . . . . 5  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
54simpld 447 . . . 4  |-  ( ph  ->  P  e.  A )
6 dia2dimlem1.f . . . . 5  |-  ( ph  ->  ( F  e.  T  /\  ( F `  P
)  =/=  P ) )
7 dia2dimlem1.l . . . . . 6  |-  .<_  =  ( le `  K )
8 dia2dimlem1.a . . . . . 6  |-  A  =  ( Atoms `  K )
9 dia2dimlem1.h . . . . . 6  |-  H  =  ( LHyp `  K
)
10 dia2dimlem1.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
11 dia2dimlem1.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
127, 8, 9, 10, 11trlat 29488 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  e.  A
)
132, 4, 6, 12syl3anc 1187 . . . 4  |-  ( ph  ->  ( R `  F
)  e.  A )
14 dia2dimlem1.u . . . . 5  |-  ( ph  ->  ( U  e.  A  /\  U  .<_  W ) )
1514simpld 447 . . . 4  |-  ( ph  ->  U  e.  A )
166simpld 447 . . . . . 6  |-  ( ph  ->  F  e.  T )
177, 8, 9, 10ltrnel 29458 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
182, 16, 4, 17syl3anc 1187 . . . . 5  |-  ( ph  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
1918simpld 447 . . . 4  |-  ( ph  ->  ( F `  P
)  e.  A )
20 dia2dimlem1.v . . . . 5  |-  ( ph  ->  ( V  e.  A  /\  V  .<_  W ) )
2120simpld 447 . . . 4  |-  ( ph  ->  V  e.  A )
224simprd 451 . . . . . 6  |-  ( ph  ->  -.  P  .<_  W )
237, 9, 10, 11trlle 29503 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  .<_  W )
242, 16, 23syl2anc 645 . . . . . . . 8  |-  ( ph  ->  ( R `  F
)  .<_  W )
2514simprd 451 . . . . . . . 8  |-  ( ph  ->  U  .<_  W )
26 hllat 28683 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  Lat )
273, 26syl 17 . . . . . . . . 9  |-  ( ph  ->  K  e.  Lat )
28 eqid 2256 . . . . . . . . . . 11  |-  ( Base `  K )  =  (
Base `  K )
2928, 8atbase 28609 . . . . . . . . . 10  |-  ( ( R `  F )  e.  A  ->  ( R `  F )  e.  ( Base `  K
) )
3013, 29syl 17 . . . . . . . . 9  |-  ( ph  ->  ( R `  F
)  e.  ( Base `  K ) )
3128, 8atbase 28609 . . . . . . . . . 10  |-  ( U  e.  A  ->  U  e.  ( Base `  K
) )
3215, 31syl 17 . . . . . . . . 9  |-  ( ph  ->  U  e.  ( Base `  K ) )
332simprd 451 . . . . . . . . . 10  |-  ( ph  ->  W  e.  H )
3428, 9lhpbase 29317 . . . . . . . . . 10  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
3533, 34syl 17 . . . . . . . . 9  |-  ( ph  ->  W  e.  ( Base `  K ) )
36 dia2dimlem1.j . . . . . . . . . 10  |-  .\/  =  ( join `  K )
3728, 7, 36latjle12 14095 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( ( R `  F )  e.  (
Base `  K )  /\  U  e.  ( Base `  K )  /\  W  e.  ( Base `  K ) ) )  ->  ( ( ( R `  F ) 
.<_  W  /\  U  .<_  W )  <->  ( ( R `
 F )  .\/  U )  .<_  W )
)
3827, 30, 32, 35, 37syl13anc 1189 . . . . . . . 8  |-  ( ph  ->  ( ( ( R `
 F )  .<_  W  /\  U  .<_  W )  <-> 
( ( R `  F )  .\/  U
)  .<_  W ) )
3924, 25, 38mpbi2and 892 . . . . . . 7  |-  ( ph  ->  ( ( R `  F )  .\/  U
)  .<_  W )
4028, 8atbase 28609 . . . . . . . . 9  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
415, 40syl 17 . . . . . . . 8  |-  ( ph  ->  P  e.  ( Base `  K ) )
4228, 36, 8hlatjcl 28686 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( R `  F )  e.  A  /\  U  e.  A )  ->  (
( R `  F
)  .\/  U )  e.  ( Base `  K
) )
433, 13, 15, 42syl3anc 1187 . . . . . . . 8  |-  ( ph  ->  ( ( R `  F )  .\/  U
)  e.  ( Base `  K ) )
4428, 7lattr 14089 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  ( ( R `  F )  .\/  U
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( P  .<_  ( ( R `  F
)  .\/  U )  /\  ( ( R `  F )  .\/  U
)  .<_  W )  ->  P  .<_  W ) )
4527, 41, 43, 35, 44syl13anc 1189 . . . . . . 7  |-  ( ph  ->  ( ( P  .<_  ( ( R `  F
)  .\/  U )  /\  ( ( R `  F )  .\/  U
)  .<_  W )  ->  P  .<_  W ) )
4639, 45mpan2d 658 . . . . . 6  |-  ( ph  ->  ( P  .<_  ( ( R `  F ) 
.\/  U )  ->  P  .<_  W ) )
4722, 46mtod 170 . . . . 5  |-  ( ph  ->  -.  P  .<_  ( ( R `  F ) 
.\/  U ) )
4820simprd 451 . . . . . . 7  |-  ( ph  ->  V  .<_  W )
4918simprd 451 . . . . . . 7  |-  ( ph  ->  -.  ( F `  P )  .<_  W )
50 nbrne2 3981 . . . . . . 7  |-  ( ( V  .<_  W  /\  -.  ( F `  P
)  .<_  W )  ->  V  =/=  ( F `  P ) )
5148, 49, 50syl2anc 645 . . . . . 6  |-  ( ph  ->  V  =/=  ( F `
 P ) )
5251necomd 2502 . . . . 5  |-  ( ph  ->  ( F `  P
)  =/=  V )
5347, 52jca 520 . . . 4  |-  ( ph  ->  ( -.  P  .<_  ( ( R `  F
)  .\/  U )  /\  ( F `  P
)  =/=  V ) )
5427adantr 453 . . . . . . . 8  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  K  e.  Lat )
5541adantr 453 . . . . . . . 8  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  P  e.  ( Base `  K )
)
5628, 36, 8hlatjcl 28686 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  V  e.  A  /\  U  e.  A )  ->  ( V  .\/  U
)  e.  ( Base `  K ) )
573, 21, 15, 56syl3anc 1187 . . . . . . . . 9  |-  ( ph  ->  ( V  .\/  U
)  e.  ( Base `  K ) )
5857adantr 453 . . . . . . . 8  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  ( V  .\/  U )  e.  (
Base `  K )
)
5935adantr 453 . . . . . . . 8  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  W  e.  ( Base `  K )
)
607, 36, 8hlatlej2 28695 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  V  e.  A )  ->  V  .<_  ( ( F `  P )  .\/  V
) )
613, 19, 21, 60syl3anc 1187 . . . . . . . . . . 11  |-  ( ph  ->  V  .<_  ( ( F `  P )  .\/  V ) )
6261adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  V  .<_  ( ( F `  P
)  .\/  V )
)
63 simpr 449 . . . . . . . . . 10  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)
6462, 63breqtrrd 3989 . . . . . . . . 9  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  V  .<_  ( P  .\/  U ) )
65 dia2dimlem1.uv . . . . . . . . . . . 12  |-  ( ph  ->  U  =/=  V )
6665necomd 2502 . . . . . . . . . . 11  |-  ( ph  ->  V  =/=  U )
677, 36, 8hlatexch2 28715 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( V  e.  A  /\  P  e.  A  /\  U  e.  A
)  /\  V  =/=  U )  ->  ( V  .<_  ( P  .\/  U
)  ->  P  .<_  ( V  .\/  U ) ) )
683, 21, 5, 15, 66, 67syl131anc 1200 . . . . . . . . . 10  |-  ( ph  ->  ( V  .<_  ( P 
.\/  U )  ->  P  .<_  ( V  .\/  U ) ) )
6968adantr 453 . . . . . . . . 9  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  ( V  .<_  ( P  .\/  U
)  ->  P  .<_  ( V  .\/  U ) ) )
7064, 69mpd 16 . . . . . . . 8  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  P  .<_  ( V  .\/  U ) )
7128, 8atbase 28609 . . . . . . . . . . . 12  |-  ( V  e.  A  ->  V  e.  ( Base `  K
) )
7221, 71syl 17 . . . . . . . . . . 11  |-  ( ph  ->  V  e.  ( Base `  K ) )
7328, 7, 36latjle12 14095 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( V  e.  ( Base `  K )  /\  U  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( V  .<_  W  /\  U  .<_  W )  <-> 
( V  .\/  U
)  .<_  W ) )
7427, 72, 32, 35, 73syl13anc 1189 . . . . . . . . . 10  |-  ( ph  ->  ( ( V  .<_  W  /\  U  .<_  W )  <-> 
( V  .\/  U
)  .<_  W ) )
7548, 25, 74mpbi2and 892 . . . . . . . . 9  |-  ( ph  ->  ( V  .\/  U
)  .<_  W )
7675adantr 453 . . . . . . . 8  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  ( V  .\/  U )  .<_  W )
7728, 7, 54, 55, 58, 59, 70, 76lattrd 14091 . . . . . . 7  |-  ( (
ph  /\  ( P  .\/  U )  =  ( ( F `  P
)  .\/  V )
)  ->  P  .<_  W )
7877ex 425 . . . . . 6  |-  ( ph  ->  ( ( P  .\/  U )  =  ( ( F `  P ) 
.\/  V )  ->  P  .<_  W ) )
7978necon3bd 2456 . . . . 5  |-  ( ph  ->  ( -.  P  .<_  W  ->  ( P  .\/  U )  =/=  ( ( F `  P ) 
.\/  V ) ) )
8022, 79mpd 16 . . . 4  |-  ( ph  ->  ( P  .\/  U
)  =/=  ( ( F `  P ) 
.\/  V ) )
817, 36, 8hlatlej2 28695 . . . . . . 7  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( F `  P )  e.  A )  -> 
( F `  P
)  .<_  ( P  .\/  ( F `  P ) ) )
823, 5, 19, 81syl3anc 1187 . . . . . 6  |-  ( ph  ->  ( F `  P
)  .<_  ( P  .\/  ( F `  P ) ) )
83 dia2dimlem1.m . . . . . . . . . 10  |-  ./\  =  ( meet `  K )
847, 36, 83, 8, 9, 10, 11trlval2 29482 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
)  ./\  W )
)
852, 16, 4, 84syl3anc 1187 . . . . . . . 8  |-  ( ph  ->  ( R `  F
)  =  ( ( P  .\/  ( F `
 P ) ) 
./\  W ) )
8685oveq2d 5773 . . . . . . 7  |-  ( ph  ->  ( P  .\/  ( R `  F )
)  =  ( P 
.\/  ( ( P 
.\/  ( F `  P ) )  ./\  W ) ) )
8728, 36, 8hlatjcl 28686 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( F `  P )  e.  A )  -> 
( P  .\/  ( F `  P )
)  e.  ( Base `  K ) )
883, 5, 19, 87syl3anc 1187 . . . . . . . . 9  |-  ( ph  ->  ( P  .\/  ( F `  P )
)  e.  ( Base `  K ) )
897, 36, 8hlatlej1 28694 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( F `  P )  e.  A )  ->  P  .<_  ( P  .\/  ( F `  P ) ) )
903, 5, 19, 89syl3anc 1187 . . . . . . . . 9  |-  ( ph  ->  P  .<_  ( P  .\/  ( F `  P
) ) )
9128, 7, 36, 83, 8atmod3i1 29183 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  ( P  .\/  ( F `  P )
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  P  .<_  ( P  .\/  ( F `  P )
) )  ->  ( P  .\/  ( ( P 
.\/  ( F `  P ) )  ./\  W ) )  =  ( ( P  .\/  ( F `  P )
)  ./\  ( P  .\/  W ) ) )
923, 5, 88, 35, 90, 91syl131anc 1200 . . . . . . . 8  |-  ( ph  ->  ( P  .\/  (
( P  .\/  ( F `  P )
)  ./\  W )
)  =  ( ( P  .\/  ( F `
 P ) ) 
./\  ( P  .\/  W ) ) )
93 eqid 2256 . . . . . . . . . . . 12  |-  ( 1.
`  K )  =  ( 1. `  K
)
947, 36, 93, 8, 9lhpjat2 29340 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( P  .\/  W
)  =  ( 1.
`  K ) )
952, 4, 94syl2anc 645 . . . . . . . . . 10  |-  ( ph  ->  ( P  .\/  W
)  =  ( 1.
`  K ) )
9695oveq2d 5773 . . . . . . . . 9  |-  ( ph  ->  ( ( P  .\/  ( F `  P ) )  ./\  ( P  .\/  W ) )  =  ( ( P  .\/  ( F `  P ) )  ./\  ( 1. `  K ) ) )
97 hlol 28681 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  OL )
983, 97syl 17 . . . . . . . . . 10  |-  ( ph  ->  K  e.  OL )
9928, 83, 93olm11 28547 . . . . . . . . . 10  |-  ( ( K  e.  OL  /\  ( P  .\/  ( F `
 P ) )  e.  ( Base `  K
) )  ->  (
( P  .\/  ( F `  P )
)  ./\  ( 1. `  K ) )  =  ( P  .\/  ( F `  P )
) )
10098, 88, 99syl2anc 645 . . . . . . . . 9  |-  ( ph  ->  ( ( P  .\/  ( F `  P ) )  ./\  ( 1. `  K ) )  =  ( P  .\/  ( F `  P )
) )
10196, 100eqtrd 2288 . . . . . . . 8  |-  ( ph  ->  ( ( P  .\/  ( F `  P ) )  ./\  ( P  .\/  W ) )  =  ( P  .\/  ( F `  P )
) )
10292, 101eqtrd 2288 . . . . . . 7  |-  ( ph  ->  ( P  .\/  (
( P  .\/  ( F `  P )
)  ./\  W )
)  =  ( P 
.\/  ( F `  P ) ) )
10386, 102eqtrd 2288 . . . . . 6  |-  ( ph  ->  ( P  .\/  ( R `  F )
)  =  ( P 
.\/  ( F `  P ) ) )
10482, 103breqtrrd 3989 . . . . 5  |-  ( ph  ->  ( F `  P
)  .<_  ( P  .\/  ( R `  F ) ) )
105 dia2dimlem1.rf . . . . . . 7  |-  ( ph  ->  ( R `  F
)  .<_  ( U  .\/  V ) )
10636, 8hlatjcom 28687 . . . . . . . 8  |-  ( ( K  e.  HL  /\  U  e.  A  /\  V  e.  A )  ->  ( U  .\/  V
)  =  ( V 
.\/  U ) )
1073, 15, 21, 106syl3anc 1187 . . . . . . 7  |-  ( ph  ->  ( U  .\/  V
)  =  ( V 
.\/  U ) )
108105, 107breqtrd 3987 . . . . . 6  |-  ( ph  ->  ( R `  F
)  .<_  ( V  .\/  U ) )
109 dia2dimlem1.ru . . . . . . 7  |-  ( ph  ->  ( R `  F
)  =/=  U )
1107, 36, 8hlatexch2 28715 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( ( R `  F )  e.  A  /\  V  e.  A  /\  U  e.  A
)  /\  ( R `  F )  =/=  U
)  ->  ( ( R `  F )  .<_  ( V  .\/  U
)  ->  V  .<_  ( ( R `  F
)  .\/  U )
) )
1113, 13, 21, 15, 109, 110syl131anc 1200 . . . . . 6  |-  ( ph  ->  ( ( R `  F )  .<_  ( V 
.\/  U )  ->  V  .<_  ( ( R `
 F )  .\/  U ) ) )
112108, 111mpd 16 . . . . 5  |-  ( ph  ->  V  .<_  ( ( R `  F )  .\/  U ) )
113104, 112jca 520 . . . 4  |-  ( ph  ->  ( ( F `  P )  .<_  ( P 
.\/  ( R `  F ) )  /\  V  .<_  ( ( R `
 F )  .\/  U ) ) )
1147, 36, 83, 8ps-2c 28847 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  ( R `  F )  e.  A )  /\  ( U  e.  A  /\  ( F `  P
)  e.  A  /\  V  e.  A )  /\  ( ( -.  P  .<_  ( ( R `  F )  .\/  U
)  /\  ( F `  P )  =/=  V
)  /\  ( P  .\/  U )  =/=  (
( F `  P
)  .\/  V )  /\  ( ( F `  P )  .<_  ( P 
.\/  ( R `  F ) )  /\  V  .<_  ( ( R `
 F )  .\/  U ) ) ) )  ->  ( ( P 
.\/  U )  ./\  ( ( F `  P )  .\/  V
) )  e.  A
)
1153, 5, 13, 15, 19, 21, 53, 80, 113, 114syl333anc 1219 . . 3  |-  ( ph  ->  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )  e.  A )
1161, 115syl5eqel 2340 . 2  |-  ( ph  ->  Q  e.  A )
11728, 36, 8hlatjcl 28686 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  P  e.  A  /\  U  e.  A )  ->  ( P  .\/  U
)  e.  ( Base `  K ) )
1183, 5, 15, 117syl3anc 1187 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  .\/  U
)  e.  ( Base `  K ) )
11928, 36, 8hlatjcl 28686 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  V  e.  A )  ->  (
( F `  P
)  .\/  V )  e.  ( Base `  K
) )
1203, 19, 21, 119syl3anc 1187 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( F `  P )  .\/  V
)  e.  ( Base `  K ) )
12128, 7, 83latmle1 14109 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  ( P  .\/  U )  e.  ( Base `  K
)  /\  ( ( F `  P )  .\/  V )  e.  (
Base `  K )
)  ->  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V
) )  .<_  ( P 
.\/  U ) )
12227, 118, 120, 121syl3anc 1187 . . . . . . . . . . 11  |-  ( ph  ->  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )  .<_  ( P  .\/  U ) )
1231, 122syl5eqbr 3996 . . . . . . . . . 10  |-  ( ph  ->  Q  .<_  ( P  .\/  U ) )
12428, 8atbase 28609 . . . . . . . . . . . . 13  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
125116, 124syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  Q  e.  ( Base `  K ) )
12628, 7, 83latlem12 14111 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  ( Q  e.  ( Base `  K )  /\  ( P  .\/  U )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
) )  ->  (
( Q  .<_  ( P 
.\/  U )  /\  Q  .<_  W )  <->  Q  .<_  ( ( P  .\/  U
)  ./\  W )
) )
12727, 125, 118, 35, 126syl13anc 1189 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Q  .<_  ( P  .\/  U )  /\  Q  .<_  W )  <-> 
Q  .<_  ( ( P 
.\/  U )  ./\  W ) ) )
128127biimpd 200 . . . . . . . . . 10  |-  ( ph  ->  ( ( Q  .<_  ( P  .\/  U )  /\  Q  .<_  W )  ->  Q  .<_  ( ( P  .\/  U ) 
./\  W ) ) )
129123, 128mpand 659 . . . . . . . . 9  |-  ( ph  ->  ( Q  .<_  W  ->  Q  .<_  ( ( P 
.\/  U )  ./\  W ) ) )
130129imp 420 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  Q  .<_  ( ( P  .\/  U
)  ./\  W )
)
131 eqid 2256 . . . . . . . . . . . . 13  |-  ( 0.
`  K )  =  ( 0. `  K
)
1327, 83, 131, 8, 9lhpmat 29349 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( P  ./\  W
)  =  ( 0.
`  K ) )
1332, 4, 132syl2anc 645 . . . . . . . . . . 11  |-  ( ph  ->  ( P  ./\  W
)  =  ( 0.
`  K ) )
134133oveq1d 5772 . . . . . . . . . 10  |-  ( ph  ->  ( ( P  ./\  W )  .\/  U )  =  ( ( 0.
`  K )  .\/  U ) )
13528, 7, 36, 83, 8atmod4i1 29185 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( U  e.  A  /\  P  e.  ( Base `  K )  /\  W  e.  ( Base `  K ) )  /\  U  .<_  W )  -> 
( ( P  ./\  W )  .\/  U )  =  ( ( P 
.\/  U )  ./\  W ) )
1363, 15, 41, 35, 25, 135syl131anc 1200 . . . . . . . . . 10  |-  ( ph  ->  ( ( P  ./\  W )  .\/  U )  =  ( ( P 
.\/  U )  ./\  W ) )
13728, 36, 131olj02 28546 . . . . . . . . . . 11  |-  ( ( K  e.  OL  /\  U  e.  ( Base `  K ) )  -> 
( ( 0. `  K )  .\/  U
)  =  U )
13898, 32, 137syl2anc 645 . . . . . . . . . 10  |-  ( ph  ->  ( ( 0. `  K )  .\/  U
)  =  U )
139134, 136, 1383eqtr3d 2296 . . . . . . . . 9  |-  ( ph  ->  ( ( P  .\/  U )  ./\  W )  =  U )
140139adantr 453 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  ( ( P  .\/  U )  ./\  W )  =  U )
141130, 140breqtrd 3987 . . . . . . 7  |-  ( (
ph  /\  Q  .<_  W )  ->  Q  .<_  U )
142 hlatl 28680 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  AtLat )
1433, 142syl 17 . . . . . . . . 9  |-  ( ph  ->  K  e.  AtLat )
144143adantr 453 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  K  e.  AtLat
)
145116adantr 453 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  Q  e.  A )
14615adantr 453 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  U  e.  A )
1477, 8atcmp 28631 . . . . . . . 8  |-  ( ( K  e.  AtLat  /\  Q  e.  A  /\  U  e.  A )  ->  ( Q  .<_  U  <->  Q  =  U ) )
148144, 145, 146, 147syl3anc 1187 . . . . . . 7  |-  ( (
ph  /\  Q  .<_  W )  ->  ( Q  .<_  U  <->  Q  =  U
) )
149141, 148mpbid 203 . . . . . 6  |-  ( (
ph  /\  Q  .<_  W )  ->  Q  =  U )
15028, 7, 83latmle2 14110 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  ( P  .\/  U )  e.  ( Base `  K
)  /\  ( ( F `  P )  .\/  V )  e.  (
Base `  K )
)  ->  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V
) )  .<_  ( ( F `  P ) 
.\/  V ) )
15127, 118, 120, 150syl3anc 1187 . . . . . . . . . . 11  |-  ( ph  ->  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )  .<_  ( ( F `  P )  .\/  V
) )
1521, 151syl5eqbr 3996 . . . . . . . . . 10  |-  ( ph  ->  Q  .<_  ( ( F `  P )  .\/  V ) )
15328, 7, 83latlem12 14111 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  ( Q  e.  ( Base `  K )  /\  ( ( F `  P )  .\/  V
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( Q  .<_  ( ( F `  P
)  .\/  V )  /\  Q  .<_  W )  <-> 
Q  .<_  ( ( ( F `  P ) 
.\/  V )  ./\  W ) ) )
15427, 125, 120, 35, 153syl13anc 1189 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Q  .<_  ( ( F `  P
)  .\/  V )  /\  Q  .<_  W )  <-> 
Q  .<_  ( ( ( F `  P ) 
.\/  V )  ./\  W ) ) )
155154biimpd 200 . . . . . . . . . 10  |-  ( ph  ->  ( ( Q  .<_  ( ( F `  P
)  .\/  V )  /\  Q  .<_  W )  ->  Q  .<_  ( ( ( F `  P
)  .\/  V )  ./\  W ) ) )
156152, 155mpand 659 . . . . . . . . 9  |-  ( ph  ->  ( Q  .<_  W  ->  Q  .<_  ( ( ( F `  P ) 
.\/  V )  ./\  W ) ) )
157156imp 420 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  Q  .<_  ( ( ( F `  P )  .\/  V
)  ./\  W )
)
1587, 83, 131, 8, 9lhpmat 29349 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F `
 P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )  -> 
( ( F `  P )  ./\  W
)  =  ( 0.
`  K ) )
1592, 18, 158syl2anc 645 . . . . . . . . . . 11  |-  ( ph  ->  ( ( F `  P )  ./\  W
)  =  ( 0.
`  K ) )
160159oveq1d 5772 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( F `
 P )  ./\  W )  .\/  V )  =  ( ( 0.
`  K )  .\/  V ) )
16128, 8atbase 28609 . . . . . . . . . . . 12  |-  ( ( F `  P )  e.  A  ->  ( F `  P )  e.  ( Base `  K
) )
16219, 161syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  P
)  e.  ( Base `  K ) )
16328, 7, 36, 83, 8atmod4i1 29185 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( V  e.  A  /\  ( F `  P
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  V  .<_  W )  ->  (
( ( F `  P )  ./\  W
)  .\/  V )  =  ( ( ( F `  P ) 
.\/  V )  ./\  W ) )
1643, 21, 162, 35, 48, 163syl131anc 1200 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( F `
 P )  ./\  W )  .\/  V )  =  ( ( ( F `  P ) 
.\/  V )  ./\  W ) )
16528, 36, 131olj02 28546 . . . . . . . . . . 11  |-  ( ( K  e.  OL  /\  V  e.  ( Base `  K ) )  -> 
( ( 0. `  K )  .\/  V
)  =  V )
16698, 72, 165syl2anc 645 . . . . . . . . . 10  |-  ( ph  ->  ( ( 0. `  K )  .\/  V
)  =  V )
167160, 164, 1663eqtr3d 2296 . . . . . . . . 9  |-  ( ph  ->  ( ( ( F `
 P )  .\/  V )  ./\  W )  =  V )
168167adantr 453 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  ( (
( F `  P
)  .\/  V )  ./\  W )  =  V )
169157, 168breqtrd 3987 . . . . . . 7  |-  ( (
ph  /\  Q  .<_  W )  ->  Q  .<_  V )
17021adantr 453 . . . . . . . 8  |-  ( (
ph  /\  Q  .<_  W )  ->  V  e.  A )
1717, 8atcmp 28631 . . . . . . . 8  |-  ( ( K  e.  AtLat  /\  Q  e.  A  /\  V  e.  A )  ->  ( Q  .<_  V  <->  Q  =  V ) )
172144, 145, 170, 171syl3anc 1187 . . . . . . 7  |-  ( (
ph  /\  Q  .<_  W )  ->  ( Q  .<_  V  <->  Q  =  V
) )
173169, 172mpbid 203 . . . . . 6  |-  ( (
ph  /\  Q  .<_  W )  ->  Q  =  V )
174149, 173eqtr3d 2290 . . . . 5  |-  ( (
ph  /\  Q  .<_  W )  ->  U  =  V )
175174ex 425 . . . 4  |-  ( ph  ->  ( Q  .<_  W  ->  U  =  V )
)
176175necon3ad 2455 . . 3  |-  ( ph  ->  ( U  =/=  V  ->  -.  Q  .<_  W ) )
17765, 176mpd 16 . 2  |-  ( ph  ->  -.  Q  .<_  W )
178116, 177jca 520 1  |-  ( ph  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2419   class class class wbr 3963   ` cfv 4638  (class class class)co 5757   Basecbs 13075   lecple 13142   joincjn 14005   meetcmee 14006   0.cp0 14070   1.cp1 14071   Latclat 14078   OLcol 28494   Atomscatm 28583   AtLatcal 28584   HLchlt 28670   LHypclh 29303   LTrncltrn 29420   trLctrl 29477
This theorem is referenced by:  dia2dimlem3  30386  dia2dimlem6  30389
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-iun 3848  df-iin 3849  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-undef 6229  df-riota 6237  df-map 6707  df-poset 14007  df-plt 14019  df-lub 14035  df-glb 14036  df-join 14037  df-meet 14038  df-p0 14072  df-p1 14073  df-lat 14079  df-clat 14141  df-oposet 28496  df-ol 28498  df-oml 28499  df-covers 28586  df-ats 28587  df-atl 28618  df-cvlat 28642  df-hlat 28671  df-llines 28817  df-psubsp 28822  df-pmap 28823  df-padd 29115  df-lhyp 29307  df-laut 29308  df-ldil 29423  df-ltrn 29424  df-trl 29478
  Copyright terms: Public domain W3C validator