Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem2 Unicode version

Theorem dia2dimlem2 31877
Description: Lemma for dia2dim 31889. Define a translation  G whose trace is atom  U. Part of proof of Lemma M in [Crawley] p. 121 line 4. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem2.l  |-  .<_  =  ( le `  K )
dia2dimlem2.j  |-  .\/  =  ( join `  K )
dia2dimlem2.m  |-  ./\  =  ( meet `  K )
dia2dimlem2.a  |-  A  =  ( Atoms `  K )
dia2dimlem2.h  |-  H  =  ( LHyp `  K
)
dia2dimlem2.t  |-  T  =  ( ( LTrn `  K
) `  W )
dia2dimlem2.r  |-  R  =  ( ( trL `  K
) `  W )
dia2dimlem2.q  |-  Q  =  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )
dia2dimlem2.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
dia2dimlem2.u  |-  ( ph  ->  ( U  e.  A  /\  U  .<_  W ) )
dia2dimlem2.v  |-  ( ph  ->  ( V  e.  A  /\  V  .<_  W ) )
dia2dimlem2.p  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
dia2dimlem2.f  |-  ( ph  ->  ( F  e.  T  /\  ( F `  P
)  =/=  P ) )
dia2dimlem2.rf  |-  ( ph  ->  ( R `  F
)  .<_  ( U  .\/  V ) )
dia2dimlem2.rv  |-  ( ph  ->  ( R `  F
)  =/=  V )
dia2dimlem2.g  |-  ( ph  ->  G  e.  T )
dia2dimlem2.gv  |-  ( ph  ->  ( G `  P
)  =  Q )
Assertion
Ref Expression
dia2dimlem2  |-  ( ph  ->  ( R `  G
)  =  U )

Proof of Theorem dia2dimlem2
StepHypRef Expression
1 dia2dimlem2.k . . . . . . . . 9  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
21simpld 445 . . . . . . . 8  |-  ( ph  ->  K  e.  HL )
3 hllat 30175 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
42, 3syl 15 . . . . . . 7  |-  ( ph  ->  K  e.  Lat )
5 dia2dimlem2.p . . . . . . . . 9  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
65simpld 445 . . . . . . . 8  |-  ( ph  ->  P  e.  A )
7 eqid 2296 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
8 dia2dimlem2.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
97, 8atbase 30101 . . . . . . . 8  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
106, 9syl 15 . . . . . . 7  |-  ( ph  ->  P  e.  ( Base `  K ) )
11 dia2dimlem2.u . . . . . . . . 9  |-  ( ph  ->  ( U  e.  A  /\  U  .<_  W ) )
1211simpld 445 . . . . . . . 8  |-  ( ph  ->  U  e.  A )
137, 8atbase 30101 . . . . . . . 8  |-  ( U  e.  A  ->  U  e.  ( Base `  K
) )
1412, 13syl 15 . . . . . . 7  |-  ( ph  ->  U  e.  ( Base `  K ) )
15 dia2dimlem2.l . . . . . . . 8  |-  .<_  =  ( le `  K )
16 dia2dimlem2.j . . . . . . . 8  |-  .\/  =  ( join `  K )
177, 15, 16latlej2 14183 . . . . . . 7  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  U  e.  ( Base `  K
) )  ->  U  .<_  ( P  .\/  U
) )
184, 10, 14, 17syl3anc 1182 . . . . . 6  |-  ( ph  ->  U  .<_  ( P  .\/  U ) )
197, 16, 8hlatjcl 30178 . . . . . . . 8  |-  ( ( K  e.  HL  /\  P  e.  A  /\  U  e.  A )  ->  ( P  .\/  U
)  e.  ( Base `  K ) )
202, 6, 12, 19syl3anc 1182 . . . . . . 7  |-  ( ph  ->  ( P  .\/  U
)  e.  ( Base `  K ) )
21 dia2dimlem2.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
227, 15, 21latleeqm2 14202 . . . . . . 7  |-  ( ( K  e.  Lat  /\  U  e.  ( Base `  K )  /\  ( P  .\/  U )  e.  ( Base `  K
) )  ->  ( U  .<_  ( P  .\/  U )  <->  ( ( P 
.\/  U )  ./\  U )  =  U ) )
234, 14, 20, 22syl3anc 1182 . . . . . 6  |-  ( ph  ->  ( U  .<_  ( P 
.\/  U )  <->  ( ( P  .\/  U )  ./\  U )  =  U ) )
2418, 23mpbid 201 . . . . 5  |-  ( ph  ->  ( ( P  .\/  U )  ./\  U )  =  U )
25 dia2dimlem2.rf . . . . . . . 8  |-  ( ph  ->  ( R `  F
)  .<_  ( U  .\/  V ) )
26 dia2dimlem2.f . . . . . . . . . 10  |-  ( ph  ->  ( F  e.  T  /\  ( F `  P
)  =/=  P ) )
27 dia2dimlem2.h . . . . . . . . . . 11  |-  H  =  ( LHyp `  K
)
28 dia2dimlem2.t . . . . . . . . . . 11  |-  T  =  ( ( LTrn `  K
) `  W )
29 dia2dimlem2.r . . . . . . . . . . 11  |-  R  =  ( ( trL `  K
) `  W )
3015, 8, 27, 28, 29trlat 30980 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  e.  A
)
311, 5, 26, 30syl3anc 1182 . . . . . . . . 9  |-  ( ph  ->  ( R `  F
)  e.  A )
32 dia2dimlem2.v . . . . . . . . . 10  |-  ( ph  ->  ( V  e.  A  /\  V  .<_  W ) )
3332simpld 445 . . . . . . . . 9  |-  ( ph  ->  V  e.  A )
34 dia2dimlem2.rv . . . . . . . . 9  |-  ( ph  ->  ( R `  F
)  =/=  V )
3515, 16, 8hlatexch2 30207 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( ( R `  F )  e.  A  /\  U  e.  A  /\  V  e.  A
)  /\  ( R `  F )  =/=  V
)  ->  ( ( R `  F )  .<_  ( U  .\/  V
)  ->  U  .<_  ( ( R `  F
)  .\/  V )
) )
362, 31, 12, 33, 34, 35syl131anc 1195 . . . . . . . 8  |-  ( ph  ->  ( ( R `  F )  .<_  ( U 
.\/  V )  ->  U  .<_  ( ( R `
 F )  .\/  V ) ) )
3725, 36mpd 14 . . . . . . 7  |-  ( ph  ->  U  .<_  ( ( R `  F )  .\/  V ) )
3826simpld 445 . . . . . . . . . 10  |-  ( ph  ->  F  e.  T )
3915, 16, 21, 8, 27, 28, 29trlval2 30974 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
)  ./\  W )
)
401, 38, 5, 39syl3anc 1182 . . . . . . . . 9  |-  ( ph  ->  ( R `  F
)  =  ( ( P  .\/  ( F `
 P ) ) 
./\  W ) )
4140oveq1d 5889 . . . . . . . 8  |-  ( ph  ->  ( ( R `  F )  .\/  V
)  =  ( ( ( P  .\/  ( F `  P )
)  ./\  W )  .\/  V ) )
4215, 8, 27, 28ltrnel 30950 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
431, 38, 5, 42syl3anc 1182 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
4443simpld 445 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  P
)  e.  A )
457, 16, 8hlatjcl 30178 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( F `  P )  e.  A )  -> 
( P  .\/  ( F `  P )
)  e.  ( Base `  K ) )
462, 6, 44, 45syl3anc 1182 . . . . . . . . . 10  |-  ( ph  ->  ( P  .\/  ( F `  P )
)  e.  ( Base `  K ) )
471simprd 449 . . . . . . . . . . 11  |-  ( ph  ->  W  e.  H )
487, 27lhpbase 30809 . . . . . . . . . . 11  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
4947, 48syl 15 . . . . . . . . . 10  |-  ( ph  ->  W  e.  ( Base `  K ) )
5032simprd 449 . . . . . . . . . 10  |-  ( ph  ->  V  .<_  W )
517, 15, 16, 21, 8atmod4i1 30677 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( V  e.  A  /\  ( P  .\/  ( F `  P )
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  V  .<_  W )  ->  (
( ( P  .\/  ( F `  P ) )  ./\  W )  .\/  V )  =  ( ( ( P  .\/  ( F `  P ) )  .\/  V ) 
./\  W ) )
522, 33, 46, 49, 50, 51syl131anc 1195 . . . . . . . . 9  |-  ( ph  ->  ( ( ( P 
.\/  ( F `  P ) )  ./\  W )  .\/  V )  =  ( ( ( P  .\/  ( F `
 P ) ) 
.\/  V )  ./\  W ) )
5316, 8hlatjass 30181 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  ( F `  P
)  e.  A  /\  V  e.  A )
)  ->  ( ( P  .\/  ( F `  P ) )  .\/  V )  =  ( P 
.\/  ( ( F `
 P )  .\/  V ) ) )
542, 6, 44, 33, 53syl13anc 1184 . . . . . . . . . 10  |-  ( ph  ->  ( ( P  .\/  ( F `  P ) )  .\/  V )  =  ( P  .\/  ( ( F `  P )  .\/  V
) ) )
5554oveq1d 5889 . . . . . . . . 9  |-  ( ph  ->  ( ( ( P 
.\/  ( F `  P ) )  .\/  V )  ./\  W )  =  ( ( P 
.\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) )
5652, 55eqtrd 2328 . . . . . . . 8  |-  ( ph  ->  ( ( ( P 
.\/  ( F `  P ) )  ./\  W )  .\/  V )  =  ( ( P 
.\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) )
5741, 56eqtrd 2328 . . . . . . 7  |-  ( ph  ->  ( ( R `  F )  .\/  V
)  =  ( ( P  .\/  ( ( F `  P ) 
.\/  V ) ) 
./\  W ) )
5837, 57breqtrd 4063 . . . . . 6  |-  ( ph  ->  U  .<_  ( ( P  .\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) )
597, 16, 8hlatjcl 30178 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  V  e.  A )  ->  (
( F `  P
)  .\/  V )  e.  ( Base `  K
) )
602, 44, 33, 59syl3anc 1182 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  P )  .\/  V
)  e.  ( Base `  K ) )
617, 16latjcl 14172 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  (
( F `  P
)  .\/  V )  e.  ( Base `  K
) )  ->  ( P  .\/  ( ( F `
 P )  .\/  V ) )  e.  (
Base `  K )
)
624, 10, 60, 61syl3anc 1182 . . . . . . . 8  |-  ( ph  ->  ( P  .\/  (
( F `  P
)  .\/  V )
)  e.  ( Base `  K ) )
637, 21latmcl 14173 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  .\/  ( ( F `  P ) 
.\/  V ) )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  ( ( F `
 P )  .\/  V ) )  ./\  W
)  e.  ( Base `  K ) )
644, 62, 49, 63syl3anc 1182 . . . . . . 7  |-  ( ph  ->  ( ( P  .\/  ( ( F `  P )  .\/  V
) )  ./\  W
)  e.  ( Base `  K ) )
657, 15, 21latmlem2 14204 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( U  e.  ( Base `  K )  /\  ( ( P  .\/  ( ( F `  P )  .\/  V
) )  ./\  W
)  e.  ( Base `  K )  /\  ( P  .\/  U )  e.  ( Base `  K
) ) )  -> 
( U  .<_  ( ( P  .\/  ( ( F `  P ) 
.\/  V ) ) 
./\  W )  -> 
( ( P  .\/  U )  ./\  U )  .<_  ( ( P  .\/  U )  ./\  ( ( P  .\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) ) ) )
664, 14, 64, 20, 65syl13anc 1184 . . . . . 6  |-  ( ph  ->  ( U  .<_  ( ( P  .\/  ( ( F `  P ) 
.\/  V ) ) 
./\  W )  -> 
( ( P  .\/  U )  ./\  U )  .<_  ( ( P  .\/  U )  ./\  ( ( P  .\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) ) ) )
6758, 66mpd 14 . . . . 5  |-  ( ph  ->  ( ( P  .\/  U )  ./\  U )  .<_  ( ( P  .\/  U )  ./\  ( ( P  .\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) ) )
6824, 67eqbrtrrd 4061 . . . 4  |-  ( ph  ->  U  .<_  ( ( P  .\/  U )  ./\  ( ( P  .\/  ( ( F `  P )  .\/  V
) )  ./\  W
) ) )
69 dia2dimlem2.g . . . . . . 7  |-  ( ph  ->  G  e.  T )
7015, 16, 21, 8, 27, 28, 29trlval2 30974 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  G )  =  ( ( P  .\/  ( G `  P )
)  ./\  W )
)
711, 69, 5, 70syl3anc 1182 . . . . . 6  |-  ( ph  ->  ( R `  G
)  =  ( ( P  .\/  ( G `
 P ) ) 
./\  W ) )
72 dia2dimlem2.gv . . . . . . . . . 10  |-  ( ph  ->  ( G `  P
)  =  Q )
73 dia2dimlem2.q . . . . . . . . . 10  |-  Q  =  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )
7472, 73syl6eq 2344 . . . . . . . . 9  |-  ( ph  ->  ( G `  P
)  =  ( ( P  .\/  U ) 
./\  ( ( F `
 P )  .\/  V ) ) )
7574oveq2d 5890 . . . . . . . 8  |-  ( ph  ->  ( P  .\/  ( G `  P )
)  =  ( P 
.\/  ( ( P 
.\/  U )  ./\  ( ( F `  P )  .\/  V
) ) ) )
7675oveq1d 5889 . . . . . . 7  |-  ( ph  ->  ( ( P  .\/  ( G `  P ) )  ./\  W )  =  ( ( P 
.\/  ( ( P 
.\/  U )  ./\  ( ( F `  P )  .\/  V
) ) )  ./\  W ) )
7715, 16, 8hlatlej1 30186 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  P  e.  A  /\  U  e.  A )  ->  P  .<_  ( P  .\/  U ) )
782, 6, 12, 77syl3anc 1182 . . . . . . . . . 10  |-  ( ph  ->  P  .<_  ( P  .\/  U ) )
797, 15, 16, 21, 8atmod3i1 30675 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  ( P  .\/  U
)  e.  ( Base `  K )  /\  (
( F `  P
)  .\/  V )  e.  ( Base `  K
) )  /\  P  .<_  ( P  .\/  U
) )  ->  ( P  .\/  ( ( P 
.\/  U )  ./\  ( ( F `  P )  .\/  V
) ) )  =  ( ( P  .\/  U )  ./\  ( P  .\/  ( ( F `  P )  .\/  V
) ) ) )
802, 6, 20, 60, 78, 79syl131anc 1195 . . . . . . . . 9  |-  ( ph  ->  ( P  .\/  (
( P  .\/  U
)  ./\  ( ( F `  P )  .\/  V ) ) )  =  ( ( P 
.\/  U )  ./\  ( P  .\/  ( ( F `  P ) 
.\/  V ) ) ) )
8180oveq1d 5889 . . . . . . . 8  |-  ( ph  ->  ( ( P  .\/  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) ) ) 
./\  W )  =  ( ( ( P 
.\/  U )  ./\  ( P  .\/  ( ( F `  P ) 
.\/  V ) ) )  ./\  W )
)
82 hlol 30173 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  OL )
832, 82syl 15 . . . . . . . . 9  |-  ( ph  ->  K  e.  OL )
847, 21latmassOLD 30041 . . . . . . . . 9  |-  ( ( K  e.  OL  /\  ( ( P  .\/  U )  e.  ( Base `  K )  /\  ( P  .\/  ( ( F `
 P )  .\/  V ) )  e.  (
Base `  K )  /\  W  e.  ( Base `  K ) ) )  ->  ( (
( P  .\/  U
)  ./\  ( P  .\/  ( ( F `  P )  .\/  V
) ) )  ./\  W )  =  ( ( P  .\/  U ) 
./\  ( ( P 
.\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) ) )
8583, 20, 62, 49, 84syl13anc 1184 . . . . . . . 8  |-  ( ph  ->  ( ( ( P 
.\/  U )  ./\  ( P  .\/  ( ( F `  P ) 
.\/  V ) ) )  ./\  W )  =  ( ( P 
.\/  U )  ./\  ( ( P  .\/  ( ( F `  P )  .\/  V
) )  ./\  W
) ) )
8681, 85eqtrd 2328 . . . . . . 7  |-  ( ph  ->  ( ( P  .\/  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) ) ) 
./\  W )  =  ( ( P  .\/  U )  ./\  ( ( P  .\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) ) )
8776, 86eqtrd 2328 . . . . . 6  |-  ( ph  ->  ( ( P  .\/  ( G `  P ) )  ./\  W )  =  ( ( P 
.\/  U )  ./\  ( ( P  .\/  ( ( F `  P )  .\/  V
) )  ./\  W
) ) )
8871, 87eqtrd 2328 . . . . 5  |-  ( ph  ->  ( R `  G
)  =  ( ( P  .\/  U ) 
./\  ( ( P 
.\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) ) )
8988eqcomd 2301 . . . 4  |-  ( ph  ->  ( ( P  .\/  U )  ./\  ( ( P  .\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) )  =  ( R `  G ) )
9068, 89breqtrd 4063 . . 3  |-  ( ph  ->  U  .<_  ( R `  G ) )
91 hlatl 30172 . . . . 5  |-  ( K  e.  HL  ->  K  e.  AtLat )
922, 91syl 15 . . . 4  |-  ( ph  ->  K  e.  AtLat )
93 hlop 30174 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  OP )
942, 93syl 15 . . . . . . . . 9  |-  ( ph  ->  K  e.  OP )
95 eqid 2296 . . . . . . . . . 10  |-  ( 0.
`  K )  =  ( 0. `  K
)
96 eqid 2296 . . . . . . . . . 10  |-  ( lt
`  K )  =  ( lt `  K
)
9795, 96, 80ltat 30103 . . . . . . . . 9  |-  ( ( K  e.  OP  /\  U  e.  A )  ->  ( 0. `  K
) ( lt `  K ) U )
9894, 12, 97syl2anc 642 . . . . . . . 8  |-  ( ph  ->  ( 0. `  K
) ( lt `  K ) U )
99 hlpos 30177 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  Poset )
1002, 99syl 15 . . . . . . . . 9  |-  ( ph  ->  K  e.  Poset )
1017, 95op0cl 29996 . . . . . . . . . 10  |-  ( K  e.  OP  ->  ( 0. `  K )  e.  ( Base `  K
) )
10294, 101syl 15 . . . . . . . . 9  |-  ( ph  ->  ( 0. `  K
)  e.  ( Base `  K ) )
1037, 27, 28, 29trlcl 30975 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( R `  G )  e.  (
Base `  K )
)
1041, 69, 103syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  ( R `  G
)  e.  ( Base `  K ) )
1057, 15, 96pltletr 14121 . . . . . . . . 9  |-  ( ( K  e.  Poset  /\  (
( 0. `  K
)  e.  ( Base `  K )  /\  U  e.  ( Base `  K
)  /\  ( R `  G )  e.  (
Base `  K )
) )  ->  (
( ( 0. `  K ) ( lt
`  K ) U  /\  U  .<_  ( R `
 G ) )  ->  ( 0. `  K ) ( lt
`  K ) ( R `  G ) ) )
106100, 102, 14, 104, 105syl13anc 1184 . . . . . . . 8  |-  ( ph  ->  ( ( ( 0.
`  K ) ( lt `  K ) U  /\  U  .<_  ( R `  G ) )  ->  ( 0. `  K ) ( lt
`  K ) ( R `  G ) ) )
10798, 90, 106mp2and 660 . . . . . . 7  |-  ( ph  ->  ( 0. `  K
) ( lt `  K ) ( R `
 G ) )
1087, 96, 95opltn0 30002 . . . . . . . 8  |-  ( ( K  e.  OP  /\  ( R `  G )  e.  ( Base `  K
) )  ->  (
( 0. `  K
) ( lt `  K ) ( R `
 G )  <->  ( R `  G )  =/=  ( 0. `  K ) ) )
10994, 104, 108syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( ( 0. `  K ) ( lt
`  K ) ( R `  G )  <-> 
( R `  G
)  =/=  ( 0.
`  K ) ) )
110107, 109mpbid 201 . . . . . 6  |-  ( ph  ->  ( R `  G
)  =/=  ( 0.
`  K ) )
111110neneqd 2475 . . . . 5  |-  ( ph  ->  -.  ( R `  G )  =  ( 0. `  K ) )
11295, 8, 27, 28, 29trlator0 30982 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( ( R `  G )  e.  A  \/  ( R `  G )  =  ( 0. `  K ) ) )
1131, 69, 112syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( ( R `  G )  e.  A  \/  ( R `  G
)  =  ( 0.
`  K ) ) )
114113orcomd 377 . . . . . 6  |-  ( ph  ->  ( ( R `  G )  =  ( 0. `  K )  \/  ( R `  G )  e.  A
) )
115114ord 366 . . . . 5  |-  ( ph  ->  ( -.  ( R `
 G )  =  ( 0. `  K
)  ->  ( R `  G )  e.  A
) )
116111, 115mpd 14 . . . 4  |-  ( ph  ->  ( R `  G
)  e.  A )
11715, 8atcmp 30123 . . . 4  |-  ( ( K  e.  AtLat  /\  U  e.  A  /\  ( R `  G )  e.  A )  ->  ( U  .<_  ( R `  G )  <->  U  =  ( R `  G ) ) )
11892, 12, 116, 117syl3anc 1182 . . 3  |-  ( ph  ->  ( U  .<_  ( R `
 G )  <->  U  =  ( R `  G ) ) )
11990, 118mpbid 201 . 2  |-  ( ph  ->  U  =  ( R `
 G ) )
120119eqcomd 2301 1  |-  ( ph  ->  ( R `  G
)  =  U )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Basecbs 13164   lecple 13231   Posetcpo 14090   ltcplt 14091   joincjn 14094   meetcmee 14095   0.cp0 14159   Latclat 14167   OPcops 29984   OLcol 29986   Atomscatm 30075   AtLatcal 30076   HLchlt 30162   LHypclh 30795   LTrncltrn 30912   trLctrl 30969
This theorem is referenced by:  dia2dimlem5  31880
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-map 6790  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-psubsp 30314  df-pmap 30315  df-padd 30607  df-lhyp 30799  df-laut 30800  df-ldil 30915  df-ltrn 30916  df-trl 30970
  Copyright terms: Public domain W3C validator