Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem2 Unicode version

Theorem dia2dimlem2 30406
Description: Lemma for dia2dim 30418. Define a translation  G whose trace is atom  U. Part of proof of Lemma M in [Crawley] p. 121 line 4. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem2.l  |-  .<_  =  ( le `  K )
dia2dimlem2.j  |-  .\/  =  ( join `  K )
dia2dimlem2.m  |-  ./\  =  ( meet `  K )
dia2dimlem2.a  |-  A  =  ( Atoms `  K )
dia2dimlem2.h  |-  H  =  ( LHyp `  K
)
dia2dimlem2.t  |-  T  =  ( ( LTrn `  K
) `  W )
dia2dimlem2.r  |-  R  =  ( ( trL `  K
) `  W )
dia2dimlem2.q  |-  Q  =  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )
dia2dimlem2.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
dia2dimlem2.u  |-  ( ph  ->  ( U  e.  A  /\  U  .<_  W ) )
dia2dimlem2.v  |-  ( ph  ->  ( V  e.  A  /\  V  .<_  W ) )
dia2dimlem2.p  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
dia2dimlem2.f  |-  ( ph  ->  ( F  e.  T  /\  ( F `  P
)  =/=  P ) )
dia2dimlem2.rf  |-  ( ph  ->  ( R `  F
)  .<_  ( U  .\/  V ) )
dia2dimlem2.rv  |-  ( ph  ->  ( R `  F
)  =/=  V )
dia2dimlem2.g  |-  ( ph  ->  G  e.  T )
dia2dimlem2.gv  |-  ( ph  ->  ( G `  P
)  =  Q )
Assertion
Ref Expression
dia2dimlem2  |-  ( ph  ->  ( R `  G
)  =  U )

Proof of Theorem dia2dimlem2
StepHypRef Expression
1 dia2dimlem2.k . . . . . . . . 9  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
21simpld 447 . . . . . . . 8  |-  ( ph  ->  K  e.  HL )
3 hllat 28704 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
42, 3syl 17 . . . . . . 7  |-  ( ph  ->  K  e.  Lat )
5 dia2dimlem2.p . . . . . . . . 9  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
65simpld 447 . . . . . . . 8  |-  ( ph  ->  P  e.  A )
7 eqid 2256 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
8 dia2dimlem2.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
97, 8atbase 28630 . . . . . . . 8  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
106, 9syl 17 . . . . . . 7  |-  ( ph  ->  P  e.  ( Base `  K ) )
11 dia2dimlem2.u . . . . . . . . 9  |-  ( ph  ->  ( U  e.  A  /\  U  .<_  W ) )
1211simpld 447 . . . . . . . 8  |-  ( ph  ->  U  e.  A )
137, 8atbase 28630 . . . . . . . 8  |-  ( U  e.  A  ->  U  e.  ( Base `  K
) )
1412, 13syl 17 . . . . . . 7  |-  ( ph  ->  U  e.  ( Base `  K ) )
15 dia2dimlem2.l . . . . . . . 8  |-  .<_  =  ( le `  K )
16 dia2dimlem2.j . . . . . . . 8  |-  .\/  =  ( join `  K )
177, 15, 16latlej2 14115 . . . . . . 7  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  U  e.  ( Base `  K
) )  ->  U  .<_  ( P  .\/  U
) )
184, 10, 14, 17syl3anc 1187 . . . . . 6  |-  ( ph  ->  U  .<_  ( P  .\/  U ) )
197, 16, 8hlatjcl 28707 . . . . . . . 8  |-  ( ( K  e.  HL  /\  P  e.  A  /\  U  e.  A )  ->  ( P  .\/  U
)  e.  ( Base `  K ) )
202, 6, 12, 19syl3anc 1187 . . . . . . 7  |-  ( ph  ->  ( P  .\/  U
)  e.  ( Base `  K ) )
21 dia2dimlem2.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
227, 15, 21latleeqm2 14134 . . . . . . 7  |-  ( ( K  e.  Lat  /\  U  e.  ( Base `  K )  /\  ( P  .\/  U )  e.  ( Base `  K
) )  ->  ( U  .<_  ( P  .\/  U )  <->  ( ( P 
.\/  U )  ./\  U )  =  U ) )
234, 14, 20, 22syl3anc 1187 . . . . . 6  |-  ( ph  ->  ( U  .<_  ( P 
.\/  U )  <->  ( ( P  .\/  U )  ./\  U )  =  U ) )
2418, 23mpbid 203 . . . . 5  |-  ( ph  ->  ( ( P  .\/  U )  ./\  U )  =  U )
25 dia2dimlem2.rf . . . . . . . 8  |-  ( ph  ->  ( R `  F
)  .<_  ( U  .\/  V ) )
26 dia2dimlem2.f . . . . . . . . . 10  |-  ( ph  ->  ( F  e.  T  /\  ( F `  P
)  =/=  P ) )
27 dia2dimlem2.h . . . . . . . . . . 11  |-  H  =  ( LHyp `  K
)
28 dia2dimlem2.t . . . . . . . . . . 11  |-  T  =  ( ( LTrn `  K
) `  W )
29 dia2dimlem2.r . . . . . . . . . . 11  |-  R  =  ( ( trL `  K
) `  W )
3015, 8, 27, 28, 29trlat 29509 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  e.  A
)
311, 5, 26, 30syl3anc 1187 . . . . . . . . 9  |-  ( ph  ->  ( R `  F
)  e.  A )
32 dia2dimlem2.v . . . . . . . . . 10  |-  ( ph  ->  ( V  e.  A  /\  V  .<_  W ) )
3332simpld 447 . . . . . . . . 9  |-  ( ph  ->  V  e.  A )
34 dia2dimlem2.rv . . . . . . . . 9  |-  ( ph  ->  ( R `  F
)  =/=  V )
3515, 16, 8hlatexch2 28736 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( ( R `  F )  e.  A  /\  U  e.  A  /\  V  e.  A
)  /\  ( R `  F )  =/=  V
)  ->  ( ( R `  F )  .<_  ( U  .\/  V
)  ->  U  .<_  ( ( R `  F
)  .\/  V )
) )
362, 31, 12, 33, 34, 35syl131anc 1200 . . . . . . . 8  |-  ( ph  ->  ( ( R `  F )  .<_  ( U 
.\/  V )  ->  U  .<_  ( ( R `
 F )  .\/  V ) ) )
3725, 36mpd 16 . . . . . . 7  |-  ( ph  ->  U  .<_  ( ( R `  F )  .\/  V ) )
3826simpld 447 . . . . . . . . . 10  |-  ( ph  ->  F  e.  T )
3915, 16, 21, 8, 27, 28, 29trlval2 29503 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
)  ./\  W )
)
401, 38, 5, 39syl3anc 1187 . . . . . . . . 9  |-  ( ph  ->  ( R `  F
)  =  ( ( P  .\/  ( F `
 P ) ) 
./\  W ) )
4140oveq1d 5793 . . . . . . . 8  |-  ( ph  ->  ( ( R `  F )  .\/  V
)  =  ( ( ( P  .\/  ( F `  P )
)  ./\  W )  .\/  V ) )
4215, 8, 27, 28ltrnel 29479 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
431, 38, 5, 42syl3anc 1187 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
4443simpld 447 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  P
)  e.  A )
457, 16, 8hlatjcl 28707 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( F `  P )  e.  A )  -> 
( P  .\/  ( F `  P )
)  e.  ( Base `  K ) )
462, 6, 44, 45syl3anc 1187 . . . . . . . . . 10  |-  ( ph  ->  ( P  .\/  ( F `  P )
)  e.  ( Base `  K ) )
471simprd 451 . . . . . . . . . . 11  |-  ( ph  ->  W  e.  H )
487, 27lhpbase 29338 . . . . . . . . . . 11  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
4947, 48syl 17 . . . . . . . . . 10  |-  ( ph  ->  W  e.  ( Base `  K ) )
5032simprd 451 . . . . . . . . . 10  |-  ( ph  ->  V  .<_  W )
517, 15, 16, 21, 8atmod4i1 29206 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( V  e.  A  /\  ( P  .\/  ( F `  P )
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  V  .<_  W )  ->  (
( ( P  .\/  ( F `  P ) )  ./\  W )  .\/  V )  =  ( ( ( P  .\/  ( F `  P ) )  .\/  V ) 
./\  W ) )
522, 33, 46, 49, 50, 51syl131anc 1200 . . . . . . . . 9  |-  ( ph  ->  ( ( ( P 
.\/  ( F `  P ) )  ./\  W )  .\/  V )  =  ( ( ( P  .\/  ( F `
 P ) ) 
.\/  V )  ./\  W ) )
5316, 8hlatjass 28710 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  ( F `  P
)  e.  A  /\  V  e.  A )
)  ->  ( ( P  .\/  ( F `  P ) )  .\/  V )  =  ( P 
.\/  ( ( F `
 P )  .\/  V ) ) )
542, 6, 44, 33, 53syl13anc 1189 . . . . . . . . . 10  |-  ( ph  ->  ( ( P  .\/  ( F `  P ) )  .\/  V )  =  ( P  .\/  ( ( F `  P )  .\/  V
) ) )
5554oveq1d 5793 . . . . . . . . 9  |-  ( ph  ->  ( ( ( P 
.\/  ( F `  P ) )  .\/  V )  ./\  W )  =  ( ( P 
.\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) )
5652, 55eqtrd 2288 . . . . . . . 8  |-  ( ph  ->  ( ( ( P 
.\/  ( F `  P ) )  ./\  W )  .\/  V )  =  ( ( P 
.\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) )
5741, 56eqtrd 2288 . . . . . . 7  |-  ( ph  ->  ( ( R `  F )  .\/  V
)  =  ( ( P  .\/  ( ( F `  P ) 
.\/  V ) ) 
./\  W ) )
5837, 57breqtrd 4007 . . . . . 6  |-  ( ph  ->  U  .<_  ( ( P  .\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) )
597, 16, 8hlatjcl 28707 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  V  e.  A )  ->  (
( F `  P
)  .\/  V )  e.  ( Base `  K
) )
602, 44, 33, 59syl3anc 1187 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  P )  .\/  V
)  e.  ( Base `  K ) )
617, 16latjcl 14104 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  (
( F `  P
)  .\/  V )  e.  ( Base `  K
) )  ->  ( P  .\/  ( ( F `
 P )  .\/  V ) )  e.  (
Base `  K )
)
624, 10, 60, 61syl3anc 1187 . . . . . . . 8  |-  ( ph  ->  ( P  .\/  (
( F `  P
)  .\/  V )
)  e.  ( Base `  K ) )
637, 21latmcl 14105 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  .\/  ( ( F `  P ) 
.\/  V ) )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  ( ( F `
 P )  .\/  V ) )  ./\  W
)  e.  ( Base `  K ) )
644, 62, 49, 63syl3anc 1187 . . . . . . 7  |-  ( ph  ->  ( ( P  .\/  ( ( F `  P )  .\/  V
) )  ./\  W
)  e.  ( Base `  K ) )
657, 15, 21latmlem2 14136 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( U  e.  ( Base `  K )  /\  ( ( P  .\/  ( ( F `  P )  .\/  V
) )  ./\  W
)  e.  ( Base `  K )  /\  ( P  .\/  U )  e.  ( Base `  K
) ) )  -> 
( U  .<_  ( ( P  .\/  ( ( F `  P ) 
.\/  V ) ) 
./\  W )  -> 
( ( P  .\/  U )  ./\  U )  .<_  ( ( P  .\/  U )  ./\  ( ( P  .\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) ) ) )
664, 14, 64, 20, 65syl13anc 1189 . . . . . 6  |-  ( ph  ->  ( U  .<_  ( ( P  .\/  ( ( F `  P ) 
.\/  V ) ) 
./\  W )  -> 
( ( P  .\/  U )  ./\  U )  .<_  ( ( P  .\/  U )  ./\  ( ( P  .\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) ) ) )
6758, 66mpd 16 . . . . 5  |-  ( ph  ->  ( ( P  .\/  U )  ./\  U )  .<_  ( ( P  .\/  U )  ./\  ( ( P  .\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) ) )
6824, 67eqbrtrrd 4005 . . . 4  |-  ( ph  ->  U  .<_  ( ( P  .\/  U )  ./\  ( ( P  .\/  ( ( F `  P )  .\/  V
) )  ./\  W
) ) )
69 dia2dimlem2.g . . . . . . 7  |-  ( ph  ->  G  e.  T )
7015, 16, 21, 8, 27, 28, 29trlval2 29503 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  G )  =  ( ( P  .\/  ( G `  P )
)  ./\  W )
)
711, 69, 5, 70syl3anc 1187 . . . . . 6  |-  ( ph  ->  ( R `  G
)  =  ( ( P  .\/  ( G `
 P ) ) 
./\  W ) )
72 dia2dimlem2.gv . . . . . . . . . 10  |-  ( ph  ->  ( G `  P
)  =  Q )
73 dia2dimlem2.q . . . . . . . . . 10  |-  Q  =  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )
7472, 73syl6eq 2304 . . . . . . . . 9  |-  ( ph  ->  ( G `  P
)  =  ( ( P  .\/  U ) 
./\  ( ( F `
 P )  .\/  V ) ) )
7574oveq2d 5794 . . . . . . . 8  |-  ( ph  ->  ( P  .\/  ( G `  P )
)  =  ( P 
.\/  ( ( P 
.\/  U )  ./\  ( ( F `  P )  .\/  V
) ) ) )
7675oveq1d 5793 . . . . . . 7  |-  ( ph  ->  ( ( P  .\/  ( G `  P ) )  ./\  W )  =  ( ( P 
.\/  ( ( P 
.\/  U )  ./\  ( ( F `  P )  .\/  V
) ) )  ./\  W ) )
7715, 16, 8hlatlej1 28715 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  P  e.  A  /\  U  e.  A )  ->  P  .<_  ( P  .\/  U ) )
782, 6, 12, 77syl3anc 1187 . . . . . . . . . 10  |-  ( ph  ->  P  .<_  ( P  .\/  U ) )
797, 15, 16, 21, 8atmod3i1 29204 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  ( P  .\/  U
)  e.  ( Base `  K )  /\  (
( F `  P
)  .\/  V )  e.  ( Base `  K
) )  /\  P  .<_  ( P  .\/  U
) )  ->  ( P  .\/  ( ( P 
.\/  U )  ./\  ( ( F `  P )  .\/  V
) ) )  =  ( ( P  .\/  U )  ./\  ( P  .\/  ( ( F `  P )  .\/  V
) ) ) )
802, 6, 20, 60, 78, 79syl131anc 1200 . . . . . . . . 9  |-  ( ph  ->  ( P  .\/  (
( P  .\/  U
)  ./\  ( ( F `  P )  .\/  V ) ) )  =  ( ( P 
.\/  U )  ./\  ( P  .\/  ( ( F `  P ) 
.\/  V ) ) ) )
8180oveq1d 5793 . . . . . . . 8  |-  ( ph  ->  ( ( P  .\/  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) ) ) 
./\  W )  =  ( ( ( P 
.\/  U )  ./\  ( P  .\/  ( ( F `  P ) 
.\/  V ) ) )  ./\  W )
)
82 hlol 28702 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  OL )
832, 82syl 17 . . . . . . . . 9  |-  ( ph  ->  K  e.  OL )
847, 21latmassOLD 28570 . . . . . . . . 9  |-  ( ( K  e.  OL  /\  ( ( P  .\/  U )  e.  ( Base `  K )  /\  ( P  .\/  ( ( F `
 P )  .\/  V ) )  e.  (
Base `  K )  /\  W  e.  ( Base `  K ) ) )  ->  ( (
( P  .\/  U
)  ./\  ( P  .\/  ( ( F `  P )  .\/  V
) ) )  ./\  W )  =  ( ( P  .\/  U ) 
./\  ( ( P 
.\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) ) )
8583, 20, 62, 49, 84syl13anc 1189 . . . . . . . 8  |-  ( ph  ->  ( ( ( P 
.\/  U )  ./\  ( P  .\/  ( ( F `  P ) 
.\/  V ) ) )  ./\  W )  =  ( ( P 
.\/  U )  ./\  ( ( P  .\/  ( ( F `  P )  .\/  V
) )  ./\  W
) ) )
8681, 85eqtrd 2288 . . . . . . 7  |-  ( ph  ->  ( ( P  .\/  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) ) ) 
./\  W )  =  ( ( P  .\/  U )  ./\  ( ( P  .\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) ) )
8776, 86eqtrd 2288 . . . . . 6  |-  ( ph  ->  ( ( P  .\/  ( G `  P ) )  ./\  W )  =  ( ( P 
.\/  U )  ./\  ( ( P  .\/  ( ( F `  P )  .\/  V
) )  ./\  W
) ) )
8871, 87eqtrd 2288 . . . . 5  |-  ( ph  ->  ( R `  G
)  =  ( ( P  .\/  U ) 
./\  ( ( P 
.\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) ) )
8988eqcomd 2261 . . . 4  |-  ( ph  ->  ( ( P  .\/  U )  ./\  ( ( P  .\/  ( ( F `
 P )  .\/  V ) )  ./\  W
) )  =  ( R `  G ) )
9068, 89breqtrd 4007 . . 3  |-  ( ph  ->  U  .<_  ( R `  G ) )
91 hlatl 28701 . . . . 5  |-  ( K  e.  HL  ->  K  e.  AtLat )
922, 91syl 17 . . . 4  |-  ( ph  ->  K  e.  AtLat )
93 hlop 28703 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  OP )
942, 93syl 17 . . . . . . . . 9  |-  ( ph  ->  K  e.  OP )
95 eqid 2256 . . . . . . . . . 10  |-  ( 0.
`  K )  =  ( 0. `  K
)
96 eqid 2256 . . . . . . . . . 10  |-  ( lt
`  K )  =  ( lt `  K
)
9795, 96, 80ltat 28632 . . . . . . . . 9  |-  ( ( K  e.  OP  /\  U  e.  A )  ->  ( 0. `  K
) ( lt `  K ) U )
9894, 12, 97syl2anc 645 . . . . . . . 8  |-  ( ph  ->  ( 0. `  K
) ( lt `  K ) U )
99 hlpos 28706 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  Poset )
1002, 99syl 17 . . . . . . . . 9  |-  ( ph  ->  K  e.  Poset )
1017, 95op0cl 28525 . . . . . . . . . 10  |-  ( K  e.  OP  ->  ( 0. `  K )  e.  ( Base `  K
) )
10294, 101syl 17 . . . . . . . . 9  |-  ( ph  ->  ( 0. `  K
)  e.  ( Base `  K ) )
1037, 27, 28, 29trlcl 29504 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( R `  G )  e.  (
Base `  K )
)
1041, 69, 103syl2anc 645 . . . . . . . . 9  |-  ( ph  ->  ( R `  G
)  e.  ( Base `  K ) )
1057, 15, 96pltletr 14053 . . . . . . . . 9  |-  ( ( K  e.  Poset  /\  (
( 0. `  K
)  e.  ( Base `  K )  /\  U  e.  ( Base `  K
)  /\  ( R `  G )  e.  (
Base `  K )
) )  ->  (
( ( 0. `  K ) ( lt
`  K ) U  /\  U  .<_  ( R `
 G ) )  ->  ( 0. `  K ) ( lt
`  K ) ( R `  G ) ) )
106100, 102, 14, 104, 105syl13anc 1189 . . . . . . . 8  |-  ( ph  ->  ( ( ( 0.
`  K ) ( lt `  K ) U  /\  U  .<_  ( R `  G ) )  ->  ( 0. `  K ) ( lt
`  K ) ( R `  G ) ) )
10798, 90, 106mp2and 663 . . . . . . 7  |-  ( ph  ->  ( 0. `  K
) ( lt `  K ) ( R `
 G ) )
1087, 96, 95opltn0 28531 . . . . . . . 8  |-  ( ( K  e.  OP  /\  ( R `  G )  e.  ( Base `  K
) )  ->  (
( 0. `  K
) ( lt `  K ) ( R `
 G )  <->  ( R `  G )  =/=  ( 0. `  K ) ) )
10994, 104, 108syl2anc 645 . . . . . . 7  |-  ( ph  ->  ( ( 0. `  K ) ( lt
`  K ) ( R `  G )  <-> 
( R `  G
)  =/=  ( 0.
`  K ) ) )
110107, 109mpbid 203 . . . . . 6  |-  ( ph  ->  ( R `  G
)  =/=  ( 0.
`  K ) )
111110neneqd 2435 . . . . 5  |-  ( ph  ->  -.  ( R `  G )  =  ( 0. `  K ) )
11295, 8, 27, 28, 29trlator0 29511 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( ( R `  G )  e.  A  \/  ( R `  G )  =  ( 0. `  K ) ) )
1131, 69, 112syl2anc 645 . . . . . . 7  |-  ( ph  ->  ( ( R `  G )  e.  A  \/  ( R `  G
)  =  ( 0.
`  K ) ) )
114113orcomd 379 . . . . . 6  |-  ( ph  ->  ( ( R `  G )  =  ( 0. `  K )  \/  ( R `  G )  e.  A
) )
115114ord 368 . . . . 5  |-  ( ph  ->  ( -.  ( R `
 G )  =  ( 0. `  K
)  ->  ( R `  G )  e.  A
) )
116111, 115mpd 16 . . . 4  |-  ( ph  ->  ( R `  G
)  e.  A )
11715, 8atcmp 28652 . . . 4  |-  ( ( K  e.  AtLat  /\  U  e.  A  /\  ( R `  G )  e.  A )  ->  ( U  .<_  ( R `  G )  <->  U  =  ( R `  G ) ) )
11892, 12, 116, 117syl3anc 1187 . . 3  |-  ( ph  ->  ( U  .<_  ( R `
 G )  <->  U  =  ( R `  G ) ) )
11990, 118mpbid 203 . 2  |-  ( ph  ->  U  =  ( R `
 G ) )
120119eqcomd 2261 1  |-  ( ph  ->  ( R `  G
)  =  U )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2419   class class class wbr 3983   ` cfv 4659  (class class class)co 5778   Basecbs 13096   lecple 13163   Posetcpo 14022   ltcplt 14023   joincjn 14026   meetcmee 14027   0.cp0 14091   Latclat 14099   OPcops 28513   OLcol 28515   Atomscatm 28604   AtLatcal 28605   HLchlt 28691   LHypclh 29324   LTrncltrn 29441   trLctrl 29498
This theorem is referenced by:  dia2dimlem5  30409
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788  df-iun 3867  df-iin 3868  df-br 3984  df-opab 4038  df-mpt 4039  df-id 4267  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-1st 6042  df-2nd 6043  df-iota 6211  df-undef 6250  df-riota 6258  df-map 6728  df-poset 14028  df-plt 14040  df-lub 14056  df-glb 14057  df-join 14058  df-meet 14059  df-p0 14093  df-p1 14094  df-lat 14100  df-clat 14162  df-oposet 28517  df-ol 28519  df-oml 28520  df-covers 28607  df-ats 28608  df-atl 28639  df-cvlat 28663  df-hlat 28692  df-psubsp 28843  df-pmap 28844  df-padd 29136  df-lhyp 29328  df-laut 29329  df-ldil 29444  df-ltrn 29445  df-trl 29499
  Copyright terms: Public domain W3C validator