Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem3 Unicode version

Theorem dia2dimlem3 31878
Description: Lemma for dia2dim 31889. Define a translation  D whose trace is atom  V. Part of proof of Lemma M in [Crawley] p. 121 line 5. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem3.l  |-  .<_  =  ( le `  K )
dia2dimlem3.j  |-  .\/  =  ( join `  K )
dia2dimlem3.m  |-  ./\  =  ( meet `  K )
dia2dimlem3.a  |-  A  =  ( Atoms `  K )
dia2dimlem3.h  |-  H  =  ( LHyp `  K
)
dia2dimlem3.t  |-  T  =  ( ( LTrn `  K
) `  W )
dia2dimlem3.r  |-  R  =  ( ( trL `  K
) `  W )
dia2dimlem3.q  |-  Q  =  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )
dia2dimlem3.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
dia2dimlem3.u  |-  ( ph  ->  ( U  e.  A  /\  U  .<_  W ) )
dia2dimlem3.v  |-  ( ph  ->  ( V  e.  A  /\  V  .<_  W ) )
dia2dimlem3.p  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
dia2dimlem3.f  |-  ( ph  ->  ( F  e.  T  /\  ( F `  P
)  =/=  P ) )
dia2dimlem3.rf  |-  ( ph  ->  ( R `  F
)  .<_  ( U  .\/  V ) )
dia2dimlem3.uv  |-  ( ph  ->  U  =/=  V )
dia2dimlem3.ru  |-  ( ph  ->  ( R `  F
)  =/=  U )
dia2dimlem3.rv  |-  ( ph  ->  ( R `  F
)  =/=  V )
dia2dimlem3.d  |-  ( ph  ->  D  e.  T )
dia2dimlem3.dv  |-  ( ph  ->  ( D `  Q
)  =  ( F `
 P ) )
Assertion
Ref Expression
dia2dimlem3  |-  ( ph  ->  ( R `  D
)  =  V )

Proof of Theorem dia2dimlem3
StepHypRef Expression
1 dia2dimlem3.k . . . . . . 7  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
21simpld 445 . . . . . 6  |-  ( ph  ->  K  e.  HL )
3 dia2dimlem3.f . . . . . . . . 9  |-  ( ph  ->  ( F  e.  T  /\  ( F `  P
)  =/=  P ) )
43simpld 445 . . . . . . . 8  |-  ( ph  ->  F  e.  T )
5 dia2dimlem3.p . . . . . . . 8  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
6 dia2dimlem3.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
7 dia2dimlem3.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
8 dia2dimlem3.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
9 dia2dimlem3.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
106, 7, 8, 9ltrnel 30950 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
111, 4, 5, 10syl3anc 1182 . . . . . . 7  |-  ( ph  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
1211simpld 445 . . . . . 6  |-  ( ph  ->  ( F `  P
)  e.  A )
13 dia2dimlem3.v . . . . . . 7  |-  ( ph  ->  ( V  e.  A  /\  V  .<_  W ) )
1413simpld 445 . . . . . 6  |-  ( ph  ->  V  e.  A )
15 dia2dimlem3.j . . . . . . 7  |-  .\/  =  ( join `  K )
166, 15, 7hlatlej2 30187 . . . . . 6  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  V  e.  A )  ->  V  .<_  ( ( F `  P )  .\/  V
) )
172, 12, 14, 16syl3anc 1182 . . . . 5  |-  ( ph  ->  V  .<_  ( ( F `  P )  .\/  V ) )
18 hllat 30175 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
192, 18syl 15 . . . . . 6  |-  ( ph  ->  K  e.  Lat )
20 eqid 2296 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
2120, 7atbase 30101 . . . . . . 7  |-  ( V  e.  A  ->  V  e.  ( Base `  K
) )
2214, 21syl 15 . . . . . 6  |-  ( ph  ->  V  e.  ( Base `  K ) )
2320, 15, 7hlatjcl 30178 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  V  e.  A )  ->  (
( F `  P
)  .\/  V )  e.  ( Base `  K
) )
242, 12, 14, 23syl3anc 1182 . . . . . 6  |-  ( ph  ->  ( ( F `  P )  .\/  V
)  e.  ( Base `  K ) )
25 dia2dimlem3.r . . . . . . . . 9  |-  R  =  ( ( trL `  K
) `  W )
266, 7, 8, 9, 25trlat 30980 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  e.  A
)
271, 5, 3, 26syl3anc 1182 . . . . . . 7  |-  ( ph  ->  ( R `  F
)  e.  A )
28 dia2dimlem3.u . . . . . . . 8  |-  ( ph  ->  ( U  e.  A  /\  U  .<_  W ) )
2928simpld 445 . . . . . . 7  |-  ( ph  ->  U  e.  A )
3020, 15, 7hlatjcl 30178 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( R `  F )  e.  A  /\  U  e.  A )  ->  (
( R `  F
)  .\/  U )  e.  ( Base `  K
) )
312, 27, 29, 30syl3anc 1182 . . . . . 6  |-  ( ph  ->  ( ( R `  F )  .\/  U
)  e.  ( Base `  K ) )
32 dia2dimlem3.m . . . . . . 7  |-  ./\  =  ( meet `  K )
3320, 6, 32latmlem2 14204 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( V  e.  ( Base `  K )  /\  ( ( F `  P )  .\/  V
)  e.  ( Base `  K )  /\  (
( R `  F
)  .\/  U )  e.  ( Base `  K
) ) )  -> 
( V  .<_  ( ( F `  P ) 
.\/  V )  -> 
( ( ( R `
 F )  .\/  U )  ./\  V )  .<_  ( ( ( R `
 F )  .\/  U )  ./\  ( ( F `  P )  .\/  V ) ) ) )
3419, 22, 24, 31, 33syl13anc 1184 . . . . 5  |-  ( ph  ->  ( V  .<_  ( ( F `  P ) 
.\/  V )  -> 
( ( ( R `
 F )  .\/  U )  ./\  V )  .<_  ( ( ( R `
 F )  .\/  U )  ./\  ( ( F `  P )  .\/  V ) ) ) )
3517, 34mpd 14 . . . 4  |-  ( ph  ->  ( ( ( R `
 F )  .\/  U )  ./\  V )  .<_  ( ( ( R `
 F )  .\/  U )  ./\  ( ( F `  P )  .\/  V ) ) )
36 dia2dimlem3.rf . . . . . . 7  |-  ( ph  ->  ( R `  F
)  .<_  ( U  .\/  V ) )
3715, 7hlatjcom 30179 . . . . . . . 8  |-  ( ( K  e.  HL  /\  U  e.  A  /\  V  e.  A )  ->  ( U  .\/  V
)  =  ( V 
.\/  U ) )
382, 29, 14, 37syl3anc 1182 . . . . . . 7  |-  ( ph  ->  ( U  .\/  V
)  =  ( V 
.\/  U ) )
3936, 38breqtrd 4063 . . . . . 6  |-  ( ph  ->  ( R `  F
)  .<_  ( V  .\/  U ) )
40 dia2dimlem3.ru . . . . . . 7  |-  ( ph  ->  ( R `  F
)  =/=  U )
416, 15, 7hlatexch2 30207 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( ( R `  F )  e.  A  /\  V  e.  A  /\  U  e.  A
)  /\  ( R `  F )  =/=  U
)  ->  ( ( R `  F )  .<_  ( V  .\/  U
)  ->  V  .<_  ( ( R `  F
)  .\/  U )
) )
422, 27, 14, 29, 40, 41syl131anc 1195 . . . . . 6  |-  ( ph  ->  ( ( R `  F )  .<_  ( V 
.\/  U )  ->  V  .<_  ( ( R `
 F )  .\/  U ) ) )
4339, 42mpd 14 . . . . 5  |-  ( ph  ->  V  .<_  ( ( R `  F )  .\/  U ) )
4420, 6, 32latleeqm2 14202 . . . . . 6  |-  ( ( K  e.  Lat  /\  V  e.  ( Base `  K )  /\  (
( R `  F
)  .\/  U )  e.  ( Base `  K
) )  ->  ( V  .<_  ( ( R `
 F )  .\/  U )  <->  ( ( ( R `  F ) 
.\/  U )  ./\  V )  =  V ) )
4519, 22, 31, 44syl3anc 1182 . . . . 5  |-  ( ph  ->  ( V  .<_  ( ( R `  F ) 
.\/  U )  <->  ( (
( R `  F
)  .\/  U )  ./\  V )  =  V ) )
4643, 45mpbid 201 . . . 4  |-  ( ph  ->  ( ( ( R `
 F )  .\/  U )  ./\  V )  =  V )
47 dia2dimlem3.d . . . . . 6  |-  ( ph  ->  D  e.  T )
48 dia2dimlem3.q . . . . . . 7  |-  Q  =  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )
49 dia2dimlem3.uv . . . . . . 7  |-  ( ph  ->  U  =/=  V )
506, 15, 32, 7, 8, 9, 25, 48, 1, 28, 13, 5, 3, 36, 49, 40dia2dimlem1 31876 . . . . . 6  |-  ( ph  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
516, 15, 32, 7, 8, 9, 25trlval2 30974 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  D  e.  T  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( R `  D )  =  ( ( Q  .\/  ( D `  Q )
)  ./\  W )
)
521, 47, 50, 51syl3anc 1182 . . . . 5  |-  ( ph  ->  ( R `  D
)  =  ( ( Q  .\/  ( D `
 Q ) ) 
./\  W ) )
5348a1i 10 . . . . . . . . 9  |-  ( ph  ->  Q  =  ( ( P  .\/  U ) 
./\  ( ( F `
 P )  .\/  V ) ) )
54 dia2dimlem3.dv . . . . . . . . 9  |-  ( ph  ->  ( D `  Q
)  =  ( F `
 P ) )
5553, 54oveq12d 5892 . . . . . . . 8  |-  ( ph  ->  ( Q  .\/  ( D `  Q )
)  =  ( ( ( P  .\/  U
)  ./\  ( ( F `  P )  .\/  V ) )  .\/  ( F `  P ) ) )
565simpld 445 . . . . . . . . . 10  |-  ( ph  ->  P  e.  A )
5720, 15, 7hlatjcl 30178 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  P  e.  A  /\  U  e.  A )  ->  ( P  .\/  U
)  e.  ( Base `  K ) )
582, 56, 29, 57syl3anc 1182 . . . . . . . . 9  |-  ( ph  ->  ( P  .\/  U
)  e.  ( Base `  K ) )
596, 15, 7hlatlej1 30186 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  V  e.  A )  ->  ( F `  P )  .<_  ( ( F `  P )  .\/  V
) )
602, 12, 14, 59syl3anc 1182 . . . . . . . . 9  |-  ( ph  ->  ( F `  P
)  .<_  ( ( F `
 P )  .\/  V ) )
6120, 6, 15, 32, 7atmod4i1 30677 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( ( F `  P )  e.  A  /\  ( P  .\/  U
)  e.  ( Base `  K )  /\  (
( F `  P
)  .\/  V )  e.  ( Base `  K
) )  /\  ( F `  P )  .<_  ( ( F `  P )  .\/  V
) )  ->  (
( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )  .\/  ( F `  P ) )  =  ( ( ( P  .\/  U
)  .\/  ( F `  P ) )  ./\  ( ( F `  P )  .\/  V
) ) )
622, 12, 58, 24, 60, 61syl131anc 1195 . . . . . . . 8  |-  ( ph  ->  ( ( ( P 
.\/  U )  ./\  ( ( F `  P )  .\/  V
) )  .\/  ( F `  P )
)  =  ( ( ( P  .\/  U
)  .\/  ( F `  P ) )  ./\  ( ( F `  P )  .\/  V
) ) )
6315, 7hlatj32 30183 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  U  e.  A  /\  ( F `  P
)  e.  A ) )  ->  ( ( P  .\/  U )  .\/  ( F `  P ) )  =  ( ( P  .\/  ( F `
 P ) ) 
.\/  U ) )
642, 56, 29, 12, 63syl13anc 1184 . . . . . . . . 9  |-  ( ph  ->  ( ( P  .\/  U )  .\/  ( F `
 P ) )  =  ( ( P 
.\/  ( F `  P ) )  .\/  U ) )
6564oveq1d 5889 . . . . . . . 8  |-  ( ph  ->  ( ( ( P 
.\/  U )  .\/  ( F `  P ) )  ./\  ( ( F `  P )  .\/  V ) )  =  ( ( ( P 
.\/  ( F `  P ) )  .\/  U )  ./\  ( ( F `  P )  .\/  V ) ) )
6655, 62, 653eqtrd 2332 . . . . . . 7  |-  ( ph  ->  ( Q  .\/  ( D `  Q )
)  =  ( ( ( P  .\/  ( F `  P )
)  .\/  U )  ./\  ( ( F `  P )  .\/  V
) ) )
6766oveq1d 5889 . . . . . 6  |-  ( ph  ->  ( ( Q  .\/  ( D `  Q ) )  ./\  W )  =  ( ( ( ( P  .\/  ( F `  P )
)  .\/  U )  ./\  ( ( F `  P )  .\/  V
) )  ./\  W
) )
68 hlol 30173 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  OL )
692, 68syl 15 . . . . . . 7  |-  ( ph  ->  K  e.  OL )
7020, 15, 7hlatjcl 30178 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( F `  P )  e.  A )  -> 
( P  .\/  ( F `  P )
)  e.  ( Base `  K ) )
712, 56, 12, 70syl3anc 1182 . . . . . . . 8  |-  ( ph  ->  ( P  .\/  ( F `  P )
)  e.  ( Base `  K ) )
7220, 7atbase 30101 . . . . . . . . 9  |-  ( U  e.  A  ->  U  e.  ( Base `  K
) )
7329, 72syl 15 . . . . . . . 8  |-  ( ph  ->  U  e.  ( Base `  K ) )
7420, 15latjcl 14172 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  .\/  ( F `
 P ) )  e.  ( Base `  K
)  /\  U  e.  ( Base `  K )
)  ->  ( ( P  .\/  ( F `  P ) )  .\/  U )  e.  ( Base `  K ) )
7519, 71, 73, 74syl3anc 1182 . . . . . . 7  |-  ( ph  ->  ( ( P  .\/  ( F `  P ) )  .\/  U )  e.  ( Base `  K
) )
761simprd 449 . . . . . . . 8  |-  ( ph  ->  W  e.  H )
7720, 8lhpbase 30809 . . . . . . . 8  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
7876, 77syl 15 . . . . . . 7  |-  ( ph  ->  W  e.  ( Base `  K ) )
7920, 32latm32 30043 . . . . . . 7  |-  ( ( K  e.  OL  /\  ( ( ( P 
.\/  ( F `  P ) )  .\/  U )  e.  ( Base `  K )  /\  (
( F `  P
)  .\/  V )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
) )  ->  (
( ( ( P 
.\/  ( F `  P ) )  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )  ./\  W )  =  ( ( ( ( P  .\/  ( F `  P ) )  .\/  U ) 
./\  W )  ./\  ( ( F `  P )  .\/  V
) ) )
8069, 75, 24, 78, 79syl13anc 1184 . . . . . 6  |-  ( ph  ->  ( ( ( ( P  .\/  ( F `
 P ) ) 
.\/  U )  ./\  ( ( F `  P )  .\/  V
) )  ./\  W
)  =  ( ( ( ( P  .\/  ( F `  P ) )  .\/  U ) 
./\  W )  ./\  ( ( F `  P )  .\/  V
) ) )
816, 15, 32, 7, 8, 9, 25trlval2 30974 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
)  ./\  W )
)
821, 4, 5, 81syl3anc 1182 . . . . . . . . 9  |-  ( ph  ->  ( R `  F
)  =  ( ( P  .\/  ( F `
 P ) ) 
./\  W ) )
8382oveq1d 5889 . . . . . . . 8  |-  ( ph  ->  ( ( R `  F )  .\/  U
)  =  ( ( ( P  .\/  ( F `  P )
)  ./\  W )  .\/  U ) )
8428simprd 449 . . . . . . . . 9  |-  ( ph  ->  U  .<_  W )
8520, 6, 15, 32, 7atmod4i1 30677 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( U  e.  A  /\  ( P  .\/  ( F `  P )
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  U  .<_  W )  ->  (
( ( P  .\/  ( F `  P ) )  ./\  W )  .\/  U )  =  ( ( ( P  .\/  ( F `  P ) )  .\/  U ) 
./\  W ) )
862, 29, 71, 78, 84, 85syl131anc 1195 . . . . . . . 8  |-  ( ph  ->  ( ( ( P 
.\/  ( F `  P ) )  ./\  W )  .\/  U )  =  ( ( ( P  .\/  ( F `
 P ) ) 
.\/  U )  ./\  W ) )
8783, 86eqtr2d 2329 . . . . . . 7  |-  ( ph  ->  ( ( ( P 
.\/  ( F `  P ) )  .\/  U )  ./\  W )  =  ( ( R `
 F )  .\/  U ) )
8887oveq1d 5889 . . . . . 6  |-  ( ph  ->  ( ( ( ( P  .\/  ( F `
 P ) ) 
.\/  U )  ./\  W )  ./\  ( ( F `  P )  .\/  V ) )  =  ( ( ( R `
 F )  .\/  U )  ./\  ( ( F `  P )  .\/  V ) ) )
8967, 80, 883eqtrd 2332 . . . . 5  |-  ( ph  ->  ( ( Q  .\/  ( D `  Q ) )  ./\  W )  =  ( ( ( R `  F ) 
.\/  U )  ./\  ( ( F `  P )  .\/  V
) ) )
9052, 89eqtr2d 2329 . . . 4  |-  ( ph  ->  ( ( ( R `
 F )  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )  =  ( R `  D
) )
9135, 46, 903brtr3d 4068 . . 3  |-  ( ph  ->  V  .<_  ( R `  D ) )
92 hlatl 30172 . . . . 5  |-  ( K  e.  HL  ->  K  e.  AtLat )
932, 92syl 15 . . . 4  |-  ( ph  ->  K  e.  AtLat )
94 hlop 30174 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  OP )
952, 94syl 15 . . . . . . . . 9  |-  ( ph  ->  K  e.  OP )
96 eqid 2296 . . . . . . . . . 10  |-  ( 0.
`  K )  =  ( 0. `  K
)
97 eqid 2296 . . . . . . . . . 10  |-  ( lt
`  K )  =  ( lt `  K
)
9896, 97, 70ltat 30103 . . . . . . . . 9  |-  ( ( K  e.  OP  /\  V  e.  A )  ->  ( 0. `  K
) ( lt `  K ) V )
9995, 14, 98syl2anc 642 . . . . . . . 8  |-  ( ph  ->  ( 0. `  K
) ( lt `  K ) V )
100 hlpos 30177 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  Poset )
1012, 100syl 15 . . . . . . . . 9  |-  ( ph  ->  K  e.  Poset )
10220, 96op0cl 29996 . . . . . . . . . 10  |-  ( K  e.  OP  ->  ( 0. `  K )  e.  ( Base `  K
) )
10395, 102syl 15 . . . . . . . . 9  |-  ( ph  ->  ( 0. `  K
)  e.  ( Base `  K ) )
10420, 8, 9, 25trlcl 30975 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  D  e.  T
)  ->  ( R `  D )  e.  (
Base `  K )
)
1051, 47, 104syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  ( R `  D
)  e.  ( Base `  K ) )
10620, 6, 97pltletr 14121 . . . . . . . . 9  |-  ( ( K  e.  Poset  /\  (
( 0. `  K
)  e.  ( Base `  K )  /\  V  e.  ( Base `  K
)  /\  ( R `  D )  e.  (
Base `  K )
) )  ->  (
( ( 0. `  K ) ( lt
`  K ) V  /\  V  .<_  ( R `
 D ) )  ->  ( 0. `  K ) ( lt
`  K ) ( R `  D ) ) )
107101, 103, 22, 105, 106syl13anc 1184 . . . . . . . 8  |-  ( ph  ->  ( ( ( 0.
`  K ) ( lt `  K ) V  /\  V  .<_  ( R `  D ) )  ->  ( 0. `  K ) ( lt
`  K ) ( R `  D ) ) )
10899, 91, 107mp2and 660 . . . . . . 7  |-  ( ph  ->  ( 0. `  K
) ( lt `  K ) ( R `
 D ) )
10920, 97, 96opltn0 30002 . . . . . . . 8  |-  ( ( K  e.  OP  /\  ( R `  D )  e.  ( Base `  K
) )  ->  (
( 0. `  K
) ( lt `  K ) ( R `
 D )  <->  ( R `  D )  =/=  ( 0. `  K ) ) )
11095, 105, 109syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( ( 0. `  K ) ( lt
`  K ) ( R `  D )  <-> 
( R `  D
)  =/=  ( 0.
`  K ) ) )
111108, 110mpbid 201 . . . . . 6  |-  ( ph  ->  ( R `  D
)  =/=  ( 0.
`  K ) )
112111neneqd 2475 . . . . 5  |-  ( ph  ->  -.  ( R `  D )  =  ( 0. `  K ) )
11396, 7, 8, 9, 25trlator0 30982 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  D  e.  T
)  ->  ( ( R `  D )  e.  A  \/  ( R `  D )  =  ( 0. `  K ) ) )
1141, 47, 113syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( ( R `  D )  e.  A  \/  ( R `  D
)  =  ( 0.
`  K ) ) )
115114orcomd 377 . . . . . 6  |-  ( ph  ->  ( ( R `  D )  =  ( 0. `  K )  \/  ( R `  D )  e.  A
) )
116115ord 366 . . . . 5  |-  ( ph  ->  ( -.  ( R `
 D )  =  ( 0. `  K
)  ->  ( R `  D )  e.  A
) )
117112, 116mpd 14 . . . 4  |-  ( ph  ->  ( R `  D
)  e.  A )
1186, 7atcmp 30123 . . . 4  |-  ( ( K  e.  AtLat  /\  V  e.  A  /\  ( R `  D )  e.  A )  ->  ( V  .<_  ( R `  D )  <->  V  =  ( R `  D ) ) )
11993, 14, 117, 118syl3anc 1182 . . 3  |-  ( ph  ->  ( V  .<_  ( R `
 D )  <->  V  =  ( R `  D ) ) )
12091, 119mpbid 201 . 2  |-  ( ph  ->  V  =  ( R `
 D ) )
121120eqcomd 2301 1  |-  ( ph  ->  ( R `  D
)  =  V )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Basecbs 13164   lecple 13231   Posetcpo 14090   ltcplt 14091   joincjn 14094   meetcmee 14095   0.cp0 14159   Latclat 14167   OPcops 29984   OLcol 29986   Atomscatm 30075   AtLatcal 30076   HLchlt 30162   LHypclh 30795   LTrncltrn 30912   trLctrl 30969
This theorem is referenced by:  dia2dimlem5  31880
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-map 6790  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-llines 30309  df-psubsp 30314  df-pmap 30315  df-padd 30607  df-lhyp 30799  df-laut 30800  df-ldil 30915  df-ltrn 30916  df-trl 30970
  Copyright terms: Public domain W3C validator