Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem3 Unicode version

Theorem dia2dimlem3 30423
Description: Lemma for dia2dim 30434. Define a translation  D whose trace is atom  V. Part of proof of Lemma M in [Crawley] p. 121 line 5. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem3.l  |-  .<_  =  ( le `  K )
dia2dimlem3.j  |-  .\/  =  ( join `  K )
dia2dimlem3.m  |-  ./\  =  ( meet `  K )
dia2dimlem3.a  |-  A  =  ( Atoms `  K )
dia2dimlem3.h  |-  H  =  ( LHyp `  K
)
dia2dimlem3.t  |-  T  =  ( ( LTrn `  K
) `  W )
dia2dimlem3.r  |-  R  =  ( ( trL `  K
) `  W )
dia2dimlem3.q  |-  Q  =  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )
dia2dimlem3.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
dia2dimlem3.u  |-  ( ph  ->  ( U  e.  A  /\  U  .<_  W ) )
dia2dimlem3.v  |-  ( ph  ->  ( V  e.  A  /\  V  .<_  W ) )
dia2dimlem3.p  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
dia2dimlem3.f  |-  ( ph  ->  ( F  e.  T  /\  ( F `  P
)  =/=  P ) )
dia2dimlem3.rf  |-  ( ph  ->  ( R `  F
)  .<_  ( U  .\/  V ) )
dia2dimlem3.uv  |-  ( ph  ->  U  =/=  V )
dia2dimlem3.ru  |-  ( ph  ->  ( R `  F
)  =/=  U )
dia2dimlem3.rv  |-  ( ph  ->  ( R `  F
)  =/=  V )
dia2dimlem3.d  |-  ( ph  ->  D  e.  T )
dia2dimlem3.dv  |-  ( ph  ->  ( D `  Q
)  =  ( F `
 P ) )
Assertion
Ref Expression
dia2dimlem3  |-  ( ph  ->  ( R `  D
)  =  V )

Proof of Theorem dia2dimlem3
StepHypRef Expression
1 dia2dimlem3.k . . . . . . 7  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
21simpld 447 . . . . . 6  |-  ( ph  ->  K  e.  HL )
3 dia2dimlem3.f . . . . . . . . 9  |-  ( ph  ->  ( F  e.  T  /\  ( F `  P
)  =/=  P ) )
43simpld 447 . . . . . . . 8  |-  ( ph  ->  F  e.  T )
5 dia2dimlem3.p . . . . . . . 8  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
6 dia2dimlem3.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
7 dia2dimlem3.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
8 dia2dimlem3.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
9 dia2dimlem3.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
106, 7, 8, 9ltrnel 29495 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
111, 4, 5, 10syl3anc 1187 . . . . . . 7  |-  ( ph  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
1211simpld 447 . . . . . 6  |-  ( ph  ->  ( F `  P
)  e.  A )
13 dia2dimlem3.v . . . . . . 7  |-  ( ph  ->  ( V  e.  A  /\  V  .<_  W ) )
1413simpld 447 . . . . . 6  |-  ( ph  ->  V  e.  A )
15 dia2dimlem3.j . . . . . . 7  |-  .\/  =  ( join `  K )
166, 15, 7hlatlej2 28732 . . . . . 6  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  V  e.  A )  ->  V  .<_  ( ( F `  P )  .\/  V
) )
172, 12, 14, 16syl3anc 1187 . . . . 5  |-  ( ph  ->  V  .<_  ( ( F `  P )  .\/  V ) )
18 hllat 28720 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
192, 18syl 17 . . . . . 6  |-  ( ph  ->  K  e.  Lat )
20 eqid 2258 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
2120, 7atbase 28646 . . . . . . 7  |-  ( V  e.  A  ->  V  e.  ( Base `  K
) )
2214, 21syl 17 . . . . . 6  |-  ( ph  ->  V  e.  ( Base `  K ) )
2320, 15, 7hlatjcl 28723 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  V  e.  A )  ->  (
( F `  P
)  .\/  V )  e.  ( Base `  K
) )
242, 12, 14, 23syl3anc 1187 . . . . . 6  |-  ( ph  ->  ( ( F `  P )  .\/  V
)  e.  ( Base `  K ) )
25 dia2dimlem3.r . . . . . . . . 9  |-  R  =  ( ( trL `  K
) `  W )
266, 7, 8, 9, 25trlat 29525 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  e.  A
)
271, 5, 3, 26syl3anc 1187 . . . . . . 7  |-  ( ph  ->  ( R `  F
)  e.  A )
28 dia2dimlem3.u . . . . . . . 8  |-  ( ph  ->  ( U  e.  A  /\  U  .<_  W ) )
2928simpld 447 . . . . . . 7  |-  ( ph  ->  U  e.  A )
3020, 15, 7hlatjcl 28723 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( R `  F )  e.  A  /\  U  e.  A )  ->  (
( R `  F
)  .\/  U )  e.  ( Base `  K
) )
312, 27, 29, 30syl3anc 1187 . . . . . 6  |-  ( ph  ->  ( ( R `  F )  .\/  U
)  e.  ( Base `  K ) )
32 dia2dimlem3.m . . . . . . 7  |-  ./\  =  ( meet `  K )
3320, 6, 32latmlem2 14150 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( V  e.  ( Base `  K )  /\  ( ( F `  P )  .\/  V
)  e.  ( Base `  K )  /\  (
( R `  F
)  .\/  U )  e.  ( Base `  K
) ) )  -> 
( V  .<_  ( ( F `  P ) 
.\/  V )  -> 
( ( ( R `
 F )  .\/  U )  ./\  V )  .<_  ( ( ( R `
 F )  .\/  U )  ./\  ( ( F `  P )  .\/  V ) ) ) )
3419, 22, 24, 31, 33syl13anc 1189 . . . . 5  |-  ( ph  ->  ( V  .<_  ( ( F `  P ) 
.\/  V )  -> 
( ( ( R `
 F )  .\/  U )  ./\  V )  .<_  ( ( ( R `
 F )  .\/  U )  ./\  ( ( F `  P )  .\/  V ) ) ) )
3517, 34mpd 16 . . . 4  |-  ( ph  ->  ( ( ( R `
 F )  .\/  U )  ./\  V )  .<_  ( ( ( R `
 F )  .\/  U )  ./\  ( ( F `  P )  .\/  V ) ) )
36 dia2dimlem3.rf . . . . . . 7  |-  ( ph  ->  ( R `  F
)  .<_  ( U  .\/  V ) )
3715, 7hlatjcom 28724 . . . . . . . 8  |-  ( ( K  e.  HL  /\  U  e.  A  /\  V  e.  A )  ->  ( U  .\/  V
)  =  ( V 
.\/  U ) )
382, 29, 14, 37syl3anc 1187 . . . . . . 7  |-  ( ph  ->  ( U  .\/  V
)  =  ( V 
.\/  U ) )
3936, 38breqtrd 4021 . . . . . 6  |-  ( ph  ->  ( R `  F
)  .<_  ( V  .\/  U ) )
40 dia2dimlem3.ru . . . . . . 7  |-  ( ph  ->  ( R `  F
)  =/=  U )
416, 15, 7hlatexch2 28752 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( ( R `  F )  e.  A  /\  V  e.  A  /\  U  e.  A
)  /\  ( R `  F )  =/=  U
)  ->  ( ( R `  F )  .<_  ( V  .\/  U
)  ->  V  .<_  ( ( R `  F
)  .\/  U )
) )
422, 27, 14, 29, 40, 41syl131anc 1200 . . . . . 6  |-  ( ph  ->  ( ( R `  F )  .<_  ( V 
.\/  U )  ->  V  .<_  ( ( R `
 F )  .\/  U ) ) )
4339, 42mpd 16 . . . . 5  |-  ( ph  ->  V  .<_  ( ( R `  F )  .\/  U ) )
4420, 6, 32latleeqm2 14148 . . . . . 6  |-  ( ( K  e.  Lat  /\  V  e.  ( Base `  K )  /\  (
( R `  F
)  .\/  U )  e.  ( Base `  K
) )  ->  ( V  .<_  ( ( R `
 F )  .\/  U )  <->  ( ( ( R `  F ) 
.\/  U )  ./\  V )  =  V ) )
4519, 22, 31, 44syl3anc 1187 . . . . 5  |-  ( ph  ->  ( V  .<_  ( ( R `  F ) 
.\/  U )  <->  ( (
( R `  F
)  .\/  U )  ./\  V )  =  V ) )
4643, 45mpbid 203 . . . 4  |-  ( ph  ->  ( ( ( R `
 F )  .\/  U )  ./\  V )  =  V )
47 dia2dimlem3.d . . . . . 6  |-  ( ph  ->  D  e.  T )
48 dia2dimlem3.q . . . . . . 7  |-  Q  =  ( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )
49 dia2dimlem3.uv . . . . . . 7  |-  ( ph  ->  U  =/=  V )
506, 15, 32, 7, 8, 9, 25, 48, 1, 28, 13, 5, 3, 36, 49, 40dia2dimlem1 30421 . . . . . 6  |-  ( ph  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
516, 15, 32, 7, 8, 9, 25trlval2 29519 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  D  e.  T  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( R `  D )  =  ( ( Q  .\/  ( D `  Q )
)  ./\  W )
)
521, 47, 50, 51syl3anc 1187 . . . . 5  |-  ( ph  ->  ( R `  D
)  =  ( ( Q  .\/  ( D `
 Q ) ) 
./\  W ) )
5348a1i 12 . . . . . . . . 9  |-  ( ph  ->  Q  =  ( ( P  .\/  U ) 
./\  ( ( F `
 P )  .\/  V ) ) )
54 dia2dimlem3.dv . . . . . . . . 9  |-  ( ph  ->  ( D `  Q
)  =  ( F `
 P ) )
5553, 54oveq12d 5810 . . . . . . . 8  |-  ( ph  ->  ( Q  .\/  ( D `  Q )
)  =  ( ( ( P  .\/  U
)  ./\  ( ( F `  P )  .\/  V ) )  .\/  ( F `  P ) ) )
565simpld 447 . . . . . . . . . 10  |-  ( ph  ->  P  e.  A )
5720, 15, 7hlatjcl 28723 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  P  e.  A  /\  U  e.  A )  ->  ( P  .\/  U
)  e.  ( Base `  K ) )
582, 56, 29, 57syl3anc 1187 . . . . . . . . 9  |-  ( ph  ->  ( P  .\/  U
)  e.  ( Base `  K ) )
596, 15, 7hlatlej1 28731 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  V  e.  A )  ->  ( F `  P )  .<_  ( ( F `  P )  .\/  V
) )
602, 12, 14, 59syl3anc 1187 . . . . . . . . 9  |-  ( ph  ->  ( F `  P
)  .<_  ( ( F `
 P )  .\/  V ) )
6120, 6, 15, 32, 7atmod4i1 29222 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( ( F `  P )  e.  A  /\  ( P  .\/  U
)  e.  ( Base `  K )  /\  (
( F `  P
)  .\/  V )  e.  ( Base `  K
) )  /\  ( F `  P )  .<_  ( ( F `  P )  .\/  V
) )  ->  (
( ( P  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )  .\/  ( F `  P ) )  =  ( ( ( P  .\/  U
)  .\/  ( F `  P ) )  ./\  ( ( F `  P )  .\/  V
) ) )
622, 12, 58, 24, 60, 61syl131anc 1200 . . . . . . . 8  |-  ( ph  ->  ( ( ( P 
.\/  U )  ./\  ( ( F `  P )  .\/  V
) )  .\/  ( F `  P )
)  =  ( ( ( P  .\/  U
)  .\/  ( F `  P ) )  ./\  ( ( F `  P )  .\/  V
) ) )
6315, 7hlatj32 28728 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  U  e.  A  /\  ( F `  P
)  e.  A ) )  ->  ( ( P  .\/  U )  .\/  ( F `  P ) )  =  ( ( P  .\/  ( F `
 P ) ) 
.\/  U ) )
642, 56, 29, 12, 63syl13anc 1189 . . . . . . . . 9  |-  ( ph  ->  ( ( P  .\/  U )  .\/  ( F `
 P ) )  =  ( ( P 
.\/  ( F `  P ) )  .\/  U ) )
6564oveq1d 5807 . . . . . . . 8  |-  ( ph  ->  ( ( ( P 
.\/  U )  .\/  ( F `  P ) )  ./\  ( ( F `  P )  .\/  V ) )  =  ( ( ( P 
.\/  ( F `  P ) )  .\/  U )  ./\  ( ( F `  P )  .\/  V ) ) )
6655, 62, 653eqtrd 2294 . . . . . . 7  |-  ( ph  ->  ( Q  .\/  ( D `  Q )
)  =  ( ( ( P  .\/  ( F `  P )
)  .\/  U )  ./\  ( ( F `  P )  .\/  V
) ) )
6766oveq1d 5807 . . . . . 6  |-  ( ph  ->  ( ( Q  .\/  ( D `  Q ) )  ./\  W )  =  ( ( ( ( P  .\/  ( F `  P )
)  .\/  U )  ./\  ( ( F `  P )  .\/  V
) )  ./\  W
) )
68 hlol 28718 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  OL )
692, 68syl 17 . . . . . . 7  |-  ( ph  ->  K  e.  OL )
7020, 15, 7hlatjcl 28723 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( F `  P )  e.  A )  -> 
( P  .\/  ( F `  P )
)  e.  ( Base `  K ) )
712, 56, 12, 70syl3anc 1187 . . . . . . . 8  |-  ( ph  ->  ( P  .\/  ( F `  P )
)  e.  ( Base `  K ) )
7220, 7atbase 28646 . . . . . . . . 9  |-  ( U  e.  A  ->  U  e.  ( Base `  K
) )
7329, 72syl 17 . . . . . . . 8  |-  ( ph  ->  U  e.  ( Base `  K ) )
7420, 15latjcl 14118 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  .\/  ( F `
 P ) )  e.  ( Base `  K
)  /\  U  e.  ( Base `  K )
)  ->  ( ( P  .\/  ( F `  P ) )  .\/  U )  e.  ( Base `  K ) )
7519, 71, 73, 74syl3anc 1187 . . . . . . 7  |-  ( ph  ->  ( ( P  .\/  ( F `  P ) )  .\/  U )  e.  ( Base `  K
) )
761simprd 451 . . . . . . . 8  |-  ( ph  ->  W  e.  H )
7720, 8lhpbase 29354 . . . . . . . 8  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
7876, 77syl 17 . . . . . . 7  |-  ( ph  ->  W  e.  ( Base `  K ) )
7920, 32latm32 28588 . . . . . . 7  |-  ( ( K  e.  OL  /\  ( ( ( P 
.\/  ( F `  P ) )  .\/  U )  e.  ( Base `  K )  /\  (
( F `  P
)  .\/  V )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
) )  ->  (
( ( ( P 
.\/  ( F `  P ) )  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )  ./\  W )  =  ( ( ( ( P  .\/  ( F `  P ) )  .\/  U ) 
./\  W )  ./\  ( ( F `  P )  .\/  V
) ) )
8069, 75, 24, 78, 79syl13anc 1189 . . . . . 6  |-  ( ph  ->  ( ( ( ( P  .\/  ( F `
 P ) ) 
.\/  U )  ./\  ( ( F `  P )  .\/  V
) )  ./\  W
)  =  ( ( ( ( P  .\/  ( F `  P ) )  .\/  U ) 
./\  W )  ./\  ( ( F `  P )  .\/  V
) ) )
816, 15, 32, 7, 8, 9, 25trlval2 29519 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
)  ./\  W )
)
821, 4, 5, 81syl3anc 1187 . . . . . . . . 9  |-  ( ph  ->  ( R `  F
)  =  ( ( P  .\/  ( F `
 P ) ) 
./\  W ) )
8382oveq1d 5807 . . . . . . . 8  |-  ( ph  ->  ( ( R `  F )  .\/  U
)  =  ( ( ( P  .\/  ( F `  P )
)  ./\  W )  .\/  U ) )
8428simprd 451 . . . . . . . . 9  |-  ( ph  ->  U  .<_  W )
8520, 6, 15, 32, 7atmod4i1 29222 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( U  e.  A  /\  ( P  .\/  ( F `  P )
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  U  .<_  W )  ->  (
( ( P  .\/  ( F `  P ) )  ./\  W )  .\/  U )  =  ( ( ( P  .\/  ( F `  P ) )  .\/  U ) 
./\  W ) )
862, 29, 71, 78, 84, 85syl131anc 1200 . . . . . . . 8  |-  ( ph  ->  ( ( ( P 
.\/  ( F `  P ) )  ./\  W )  .\/  U )  =  ( ( ( P  .\/  ( F `
 P ) ) 
.\/  U )  ./\  W ) )
8783, 86eqtr2d 2291 . . . . . . 7  |-  ( ph  ->  ( ( ( P 
.\/  ( F `  P ) )  .\/  U )  ./\  W )  =  ( ( R `
 F )  .\/  U ) )
8887oveq1d 5807 . . . . . 6  |-  ( ph  ->  ( ( ( ( P  .\/  ( F `
 P ) ) 
.\/  U )  ./\  W )  ./\  ( ( F `  P )  .\/  V ) )  =  ( ( ( R `
 F )  .\/  U )  ./\  ( ( F `  P )  .\/  V ) ) )
8967, 80, 883eqtrd 2294 . . . . 5  |-  ( ph  ->  ( ( Q  .\/  ( D `  Q ) )  ./\  W )  =  ( ( ( R `  F ) 
.\/  U )  ./\  ( ( F `  P )  .\/  V
) ) )
9052, 89eqtr2d 2291 . . . 4  |-  ( ph  ->  ( ( ( R `
 F )  .\/  U )  ./\  ( ( F `  P )  .\/  V ) )  =  ( R `  D
) )
9135, 46, 903brtr3d 4026 . . 3  |-  ( ph  ->  V  .<_  ( R `  D ) )
92 hlatl 28717 . . . . 5  |-  ( K  e.  HL  ->  K  e.  AtLat )
932, 92syl 17 . . . 4  |-  ( ph  ->  K  e.  AtLat )
94 hlop 28719 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  OP )
952, 94syl 17 . . . . . . . . 9  |-  ( ph  ->  K  e.  OP )
96 eqid 2258 . . . . . . . . . 10  |-  ( 0.
`  K )  =  ( 0. `  K
)
97 eqid 2258 . . . . . . . . . 10  |-  ( lt
`  K )  =  ( lt `  K
)
9896, 97, 70ltat 28648 . . . . . . . . 9  |-  ( ( K  e.  OP  /\  V  e.  A )  ->  ( 0. `  K
) ( lt `  K ) V )
9995, 14, 98syl2anc 645 . . . . . . . 8  |-  ( ph  ->  ( 0. `  K
) ( lt `  K ) V )
100 hlpos 28722 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  Poset )
1012, 100syl 17 . . . . . . . . 9  |-  ( ph  ->  K  e.  Poset )
10220, 96op0cl 28541 . . . . . . . . . 10  |-  ( K  e.  OP  ->  ( 0. `  K )  e.  ( Base `  K
) )
10395, 102syl 17 . . . . . . . . 9  |-  ( ph  ->  ( 0. `  K
)  e.  ( Base `  K ) )
10420, 8, 9, 25trlcl 29520 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  D  e.  T
)  ->  ( R `  D )  e.  (
Base `  K )
)
1051, 47, 104syl2anc 645 . . . . . . . . 9  |-  ( ph  ->  ( R `  D
)  e.  ( Base `  K ) )
10620, 6, 97pltletr 14067 . . . . . . . . 9  |-  ( ( K  e.  Poset  /\  (
( 0. `  K
)  e.  ( Base `  K )  /\  V  e.  ( Base `  K
)  /\  ( R `  D )  e.  (
Base `  K )
) )  ->  (
( ( 0. `  K ) ( lt
`  K ) V  /\  V  .<_  ( R `
 D ) )  ->  ( 0. `  K ) ( lt
`  K ) ( R `  D ) ) )
107101, 103, 22, 105, 106syl13anc 1189 . . . . . . . 8  |-  ( ph  ->  ( ( ( 0.
`  K ) ( lt `  K ) V  /\  V  .<_  ( R `  D ) )  ->  ( 0. `  K ) ( lt
`  K ) ( R `  D ) ) )
10899, 91, 107mp2and 663 . . . . . . 7  |-  ( ph  ->  ( 0. `  K
) ( lt `  K ) ( R `
 D ) )
10920, 97, 96opltn0 28547 . . . . . . . 8  |-  ( ( K  e.  OP  /\  ( R `  D )  e.  ( Base `  K
) )  ->  (
( 0. `  K
) ( lt `  K ) ( R `
 D )  <->  ( R `  D )  =/=  ( 0. `  K ) ) )
11095, 105, 109syl2anc 645 . . . . . . 7  |-  ( ph  ->  ( ( 0. `  K ) ( lt
`  K ) ( R `  D )  <-> 
( R `  D
)  =/=  ( 0.
`  K ) ) )
111108, 110mpbid 203 . . . . . 6  |-  ( ph  ->  ( R `  D
)  =/=  ( 0.
`  K ) )
112111neneqd 2437 . . . . 5  |-  ( ph  ->  -.  ( R `  D )  =  ( 0. `  K ) )
11396, 7, 8, 9, 25trlator0 29527 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  D  e.  T
)  ->  ( ( R `  D )  e.  A  \/  ( R `  D )  =  ( 0. `  K ) ) )
1141, 47, 113syl2anc 645 . . . . . . 7  |-  ( ph  ->  ( ( R `  D )  e.  A  \/  ( R `  D
)  =  ( 0.
`  K ) ) )
115114orcomd 379 . . . . . 6  |-  ( ph  ->  ( ( R `  D )  =  ( 0. `  K )  \/  ( R `  D )  e.  A
) )
116115ord 368 . . . . 5  |-  ( ph  ->  ( -.  ( R `
 D )  =  ( 0. `  K
)  ->  ( R `  D )  e.  A
) )
117112, 116mpd 16 . . . 4  |-  ( ph  ->  ( R `  D
)  e.  A )
1186, 7atcmp 28668 . . . 4  |-  ( ( K  e.  AtLat  /\  V  e.  A  /\  ( R `  D )  e.  A )  ->  ( V  .<_  ( R `  D )  <->  V  =  ( R `  D ) ) )
11993, 14, 117, 118syl3anc 1187 . . 3  |-  ( ph  ->  ( V  .<_  ( R `
 D )  <->  V  =  ( R `  D ) ) )
12091, 119mpbid 203 . 2  |-  ( ph  ->  V  =  ( R `
 D ) )
121120eqcomd 2263 1  |-  ( ph  ->  ( R `  D
)  =  V )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2421   class class class wbr 3997   ` cfv 4673  (class class class)co 5792   Basecbs 13110   lecple 13177   Posetcpo 14036   ltcplt 14037   joincjn 14040   meetcmee 14041   0.cp0 14105   Latclat 14113   OPcops 28529   OLcol 28531   Atomscatm 28620   AtLatcal 28621   HLchlt 28707   LHypclh 29340   LTrncltrn 29457   trLctrl 29514
This theorem is referenced by:  dia2dimlem5  30425
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-undef 6264  df-riota 6272  df-map 6742  df-poset 14042  df-plt 14054  df-lub 14070  df-glb 14071  df-join 14072  df-meet 14073  df-p0 14107  df-p1 14108  df-lat 14114  df-clat 14176  df-oposet 28533  df-ol 28535  df-oml 28536  df-covers 28623  df-ats 28624  df-atl 28655  df-cvlat 28679  df-hlat 28708  df-llines 28854  df-psubsp 28859  df-pmap 28860  df-padd 29152  df-lhyp 29344  df-laut 29345  df-ldil 29460  df-ltrn 29461  df-trl 29515
  Copyright terms: Public domain W3C validator