Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem4 Unicode version

Theorem dia2dimlem4 31879
Description: Lemma for dia2dim 31889. Show that the composition (sum) of translations (vectors)  G and  D equals  F. Part of proof of Lemma M in [Crawley] p. 121 line 5. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem4.l  |-  .<_  =  ( le `  K )
dia2dimlem4.a  |-  A  =  ( Atoms `  K )
dia2dimlem4.h  |-  H  =  ( LHyp `  K
)
dia2dimlem4.t  |-  T  =  ( ( LTrn `  K
) `  W )
dia2dimlem4.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
dia2dimlem4.p  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
dia2dimlem4.f  |-  ( ph  ->  F  e.  T )
dia2dimlem4.g  |-  ( ph  ->  G  e.  T )
dia2dimlem4.gv  |-  ( ph  ->  ( G `  P
)  =  Q )
dia2dimlem4.d  |-  ( ph  ->  D  e.  T )
dia2dimlem4.dv  |-  ( ph  ->  ( D `  Q
)  =  ( F `
 P ) )
Assertion
Ref Expression
dia2dimlem4  |-  ( ph  ->  ( D  o.  G
)  =  F )

Proof of Theorem dia2dimlem4
StepHypRef Expression
1 dia2dimlem4.k . 2  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
2 dia2dimlem4.d . . 3  |-  ( ph  ->  D  e.  T )
3 dia2dimlem4.g . . 3  |-  ( ph  ->  G  e.  T )
4 dia2dimlem4.h . . . 4  |-  H  =  ( LHyp `  K
)
5 dia2dimlem4.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
64, 5ltrnco 31530 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  D  e.  T  /\  G  e.  T
)  ->  ( D  o.  G )  e.  T
)
71, 2, 3, 6syl3anc 1182 . 2  |-  ( ph  ->  ( D  o.  G
)  e.  T )
8 dia2dimlem4.f . 2  |-  ( ph  ->  F  e.  T )
9 dia2dimlem4.p . 2  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
109simpld 445 . . . 4  |-  ( ph  ->  P  e.  A )
11 dia2dimlem4.l . . . . 5  |-  .<_  =  ( le `  K )
12 dia2dimlem4.a . . . . 5  |-  A  =  ( Atoms `  K )
1311, 12, 4, 5ltrncoval 30956 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( D  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  (
( D  o.  G
) `  P )  =  ( D `  ( G `  P ) ) )
141, 2, 3, 10, 13syl121anc 1187 . . 3  |-  ( ph  ->  ( ( D  o.  G ) `  P
)  =  ( D `
 ( G `  P ) ) )
15 dia2dimlem4.gv . . . 4  |-  ( ph  ->  ( G `  P
)  =  Q )
1615fveq2d 5545 . . 3  |-  ( ph  ->  ( D `  ( G `  P )
)  =  ( D `
 Q ) )
17 dia2dimlem4.dv . . 3  |-  ( ph  ->  ( D `  Q
)  =  ( F `
 P ) )
1814, 16, 173eqtrd 2332 . 2  |-  ( ph  ->  ( ( D  o.  G ) `  P
)  =  ( F `
 P ) )
1911, 12, 4, 5cdlemd 31018 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( D  o.  G )  e.  T  /\  F  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( D  o.  G ) `  P )  =  ( F `  P ) )  ->  ( D  o.  G )  =  F )
201, 7, 8, 9, 18, 19syl311anc 1196 1  |-  ( ph  ->  ( D  o.  G
)  =  F )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   class class class wbr 4039    o. ccom 4709   ` cfv 5271   lecple 13231   Atomscatm 30075   HLchlt 30162   LHypclh 30795   LTrncltrn 30912
This theorem is referenced by:  dia2dimlem5  31880
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-map 6790  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-llines 30309  df-lplanes 30310  df-lvols 30311  df-lines 30312  df-psubsp 30314  df-pmap 30315  df-padd 30607  df-lhyp 30799  df-laut 30800  df-ldil 30915  df-ltrn 30916  df-trl 30970
  Copyright terms: Public domain W3C validator