Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaf11N Unicode version

Theorem diaf11N 30518
Description: The partial isomorphism A for a lattice  K is a one-to-one function. . Part of Lemma M of [Crawley] p. 120 line 27. (Contributed by NM, 4-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dia1o.h  |-  H  =  ( LHyp `  K
)
dia1o.i  |-  I  =  ( ( DIsoA `  K
) `  W )
Assertion
Ref Expression
diaf11N  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I :  dom  I -1-1-onto-> ran  I )

Proof of Theorem diaf11N
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2284 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
2 eqid 2284 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
3 dia1o.h . . . 4  |-  H  =  ( LHyp `  K
)
4 dia1o.i . . . 4  |-  I  =  ( ( DIsoA `  K
) `  W )
51, 2, 3, 4diafn 30503 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I  Fn  { x  e.  ( Base `  K
)  |  x ( le `  K ) W } )
6 fnfun 5307 . . . 4  |-  ( I  Fn  { x  e.  ( Base `  K
)  |  x ( le `  K ) W }  ->  Fun  I )
7 funfn 5249 . . . 4  |-  ( Fun  I  <->  I  Fn  dom  I )
86, 7sylib 188 . . 3  |-  ( I  Fn  { x  e.  ( Base `  K
)  |  x ( le `  K ) W }  ->  I  Fn  dom  I )
95, 8syl 15 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I  Fn  dom  I
)
10 eqidd 2285 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ran  I  =  ran  I )
111, 2, 3, 4diaeldm 30505 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( x  e.  dom  I 
<->  ( x  e.  (
Base `  K )  /\  x ( le `  K ) W ) ) )
121, 2, 3, 4diaeldm 30505 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( y  e.  dom  I 
<->  ( y  e.  (
Base `  K )  /\  y ( le `  K ) W ) ) )
1311, 12anbi12d 691 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( x  e. 
dom  I  /\  y  e.  dom  I )  <->  ( (
x  e.  ( Base `  K )  /\  x
( le `  K
) W )  /\  ( y  e.  (
Base `  K )  /\  y ( le `  K ) W ) ) ) )
141, 2, 3, 4dia11N 30517 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  /\  ( y  e.  ( Base `  K
)  /\  y ( le `  K ) W ) )  ->  (
( I `  x
)  =  ( I `
 y )  <->  x  =  y ) )
1514biimpd 198 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  /\  ( y  e.  ( Base `  K
)  /\  y ( le `  K ) W ) )  ->  (
( I `  x
)  =  ( I `
 y )  ->  x  =  y )
)
16153expib 1154 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  /\  ( y  e.  ( Base `  K
)  /\  y ( le `  K ) W ) )  ->  (
( I `  x
)  =  ( I `
 y )  ->  x  =  y )
) )
1713, 16sylbid 206 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( x  e. 
dom  I  /\  y  e.  dom  I )  -> 
( ( I `  x )  =  ( I `  y )  ->  x  =  y ) ) )
1817ralrimivv 2635 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  A. x  e.  dom  I A. y  e.  dom  I ( ( I `
 x )  =  ( I `  y
)  ->  x  =  y ) )
19 dff1o6 5753 . 2  |-  ( I :  dom  I -1-1-onto-> ran  I  <->  ( I  Fn  dom  I  /\  ran  I  =  ran  I  /\  A. x  e. 
dom  I A. y  e.  dom  I ( ( I `  x )  =  ( I `  y )  ->  x  =  y ) ) )
209, 10, 18, 19syl3anbrc 1136 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I :  dom  I -1-1-onto-> ran  I )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1685   A.wral 2544   {crab 2548   class class class wbr 4024    dom cdm 4688   ran crn 4689   Fun wfun 5215    Fn wfn 5216   -1-1-onto->wf1o 5220   ` cfv 5221   Basecbs 13144   lecple 13211   HLchlt 28819   LHypclh 29452   DIsoAcdia 30497
This theorem is referenced by:  diaclN  30519  diacnvclN  30520  dia1elN  30523  diainN  30526  diaintclN  30527  diasslssN  30528  docaclN  30593  diaocN  30594  doca3N  30596  diaf1oN  30599
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-undef 6292  df-riota 6300  df-map 6770  df-poset 14076  df-plt 14088  df-lub 14104  df-glb 14105  df-join 14106  df-meet 14107  df-p0 14141  df-p1 14142  df-lat 14148  df-clat 14210  df-oposet 28645  df-ol 28647  df-oml 28648  df-covers 28735  df-ats 28736  df-atl 28767  df-cvlat 28791  df-hlat 28820  df-llines 28966  df-lplanes 28967  df-lvols 28968  df-lines 28969  df-psubsp 28971  df-pmap 28972  df-padd 29264  df-lhyp 29456  df-laut 29457  df-ldil 29572  df-ltrn 29573  df-trl 29627  df-disoa 30498
  Copyright terms: Public domain W3C validator