Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dialss Unicode version

Theorem dialss 30403
Description: The value of partial isomorphism A is a subspace of partial vector space A. Part of Lemma M of [Crawley] p. 120 line 26. (Contributed by NM, 17-Jan-2014.) (Revised by Mario Carneiro, 23-Jun-2014.)
Hypotheses
Ref Expression
dialss.b  |-  B  =  ( Base `  K
)
dialss.l  |-  .<_  =  ( le `  K )
dialss.h  |-  H  =  ( LHyp `  K
)
dialss.u  |-  U  =  ( ( DVecA `  K
) `  W )
dialss.i  |-  I  =  ( ( DIsoA `  K
) `  W )
dialss.s  |-  S  =  ( LSubSp `  U )
Assertion
Ref Expression
dialss  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
I `  X )  e.  S )

Proof of Theorem dialss
StepHypRef Expression
1 eqidd 2259 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (Scalar `  U )  =  (Scalar `  U ) )
2 dialss.h . . . . 5  |-  H  =  ( LHyp `  K
)
3 eqid 2258 . . . . 5  |-  ( (
TEndo `  K ) `  W )  =  ( ( TEndo `  K ) `  W )
4 dialss.u . . . . 5  |-  U  =  ( ( DVecA `  K
) `  W )
5 eqid 2258 . . . . 5  |-  (Scalar `  U )  =  (Scalar `  U )
6 eqid 2258 . . . . 5  |-  ( Base `  (Scalar `  U )
)  =  ( Base `  (Scalar `  U )
)
72, 3, 4, 5, 6dvabase 30363 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  (Scalar `  U ) )  =  ( ( TEndo `  K
) `  W )
)
87eqcomd 2263 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( TEndo `  K
) `  W )  =  ( Base `  (Scalar `  U ) ) )
98adantr 453 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
( TEndo `  K ) `  W )  =  (
Base `  (Scalar `  U
) ) )
10 eqid 2258 . . . . 5  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
11 eqid 2258 . . . . 5  |-  ( Base `  U )  =  (
Base `  U )
122, 10, 4, 11dvavbase 30369 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  U
)  =  ( (
LTrn `  K ) `  W ) )
1312eqcomd 2263 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( LTrn `  K
) `  W )  =  ( Base `  U
) )
1413adantr 453 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
( LTrn `  K ) `  W )  =  (
Base `  U )
)
15 eqidd 2259 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( +g  `  U )  =  ( +g  `  U
) )
16 eqidd 2259 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( .s `  U )  =  ( .s `  U
) )
17 dialss.s . . 3  |-  S  =  ( LSubSp `  U )
1817a1i 12 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  S  =  ( LSubSp `  U
) )
19 dialss.b . . 3  |-  B  =  ( Base `  K
)
20 dialss.l . . 3  |-  .<_  =  ( le `  K )
21 dialss.i . . 3  |-  I  =  ( ( DIsoA `  K
) `  W )
2219, 20, 2, 10, 21diass 30399 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
I `  X )  C_  ( ( LTrn `  K
) `  W )
)
2319, 20, 2, 21dian0 30396 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
I `  X )  =/=  (/) )
24 simpll 733 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
25 simpr1 966 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  x  e.  ( ( TEndo `  K
) `  W )
)
26 simplr 734 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  ( X  e.  B  /\  X  .<_  W ) )
27 simpr2 967 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  a  e.  ( I `  X
) )
2819, 20, 2, 10, 21diael 30400 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  a  e.  ( I `  X
) )  ->  a  e.  ( ( LTrn `  K
) `  W )
)
2924, 26, 27, 28syl3anc 1187 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  a  e.  ( ( LTrn `  K
) `  W )
)
30 eqid 2258 . . . . . . 7  |-  ( .s
`  U )  =  ( .s `  U
)
312, 10, 3, 4, 30dvavsca 30373 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
( LTrn `  K ) `  W ) ) )  ->  ( x ( .s `  U ) a )  =  ( x `  a ) )
3224, 25, 29, 31syl12anc 1185 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  (
x ( .s `  U ) a )  =  ( x `  a ) )
3332oveq1d 5807 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  (
( x ( .s
`  U ) a ) ( +g  `  U
) b )  =  ( ( x `  a ) ( +g  `  U ) b ) )
342, 10, 3tendocl 30123 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  x  e.  ( ( TEndo `  K ) `  W )  /\  a  e.  ( ( LTrn `  K
) `  W )
)  ->  ( x `  a )  e.  ( ( LTrn `  K
) `  W )
)
3524, 25, 29, 34syl3anc 1187 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  (
x `  a )  e.  ( ( LTrn `  K
) `  W )
)
36 simpr3 968 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  b  e.  ( I `  X
) )
3719, 20, 2, 10, 21diael 30400 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  b  e.  ( I `  X
) )  ->  b  e.  ( ( LTrn `  K
) `  W )
)
3824, 26, 36, 37syl3anc 1187 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  b  e.  ( ( LTrn `  K
) `  W )
)
39 eqid 2258 . . . . . 6  |-  ( +g  `  U )  =  ( +g  `  U )
402, 10, 4, 39dvavadd 30371 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( x `
 a )  e.  ( ( LTrn `  K
) `  W )  /\  b  e.  (
( LTrn `  K ) `  W ) ) )  ->  ( ( x `
 a ) ( +g  `  U ) b )  =  ( ( x `  a
)  o.  b ) )
4124, 35, 38, 40syl12anc 1185 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  (
( x `  a
) ( +g  `  U
) b )  =  ( ( x `  a )  o.  b
) )
4233, 41eqtrd 2290 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  (
( x ( .s
`  U ) a ) ( +g  `  U
) b )  =  ( ( x `  a )  o.  b
) )
432, 10ltrnco 30075 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( x `  a )  e.  ( ( LTrn `  K
) `  W )  /\  b  e.  (
( LTrn `  K ) `  W ) )  -> 
( ( x `  a )  o.  b
)  e.  ( (
LTrn `  K ) `  W ) )
4424, 35, 38, 43syl3anc 1187 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  (
( x `  a
)  o.  b )  e.  ( ( LTrn `  K ) `  W
) )
45 hllat 28720 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
4645ad3antrrr 713 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  K  e.  Lat )
47 eqid 2258 . . . . . . 7  |-  ( ( trL `  K ) `
 W )  =  ( ( trL `  K
) `  W )
4819, 2, 10, 47trlcl 29520 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( x `
 a )  o.  b )  e.  ( ( LTrn `  K
) `  W )
)  ->  ( (
( trL `  K
) `  W ) `  ( ( x `  a )  o.  b
) )  e.  B
)
4924, 44, 48syl2anc 645 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  (
( ( trL `  K
) `  W ) `  ( ( x `  a )  o.  b
) )  e.  B
)
5019, 2, 10, 47trlcl 29520 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( x `  a )  e.  ( ( LTrn `  K
) `  W )
)  ->  ( (
( trL `  K
) `  W ) `  ( x `  a
) )  e.  B
)
5124, 35, 50syl2anc 645 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  (
( ( trL `  K
) `  W ) `  ( x `  a
) )  e.  B
)
5219, 2, 10, 47trlcl 29520 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  b  e.  ( ( LTrn `  K
) `  W )
)  ->  ( (
( trL `  K
) `  W ) `  b )  e.  B
)
5324, 38, 52syl2anc 645 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  (
( ( trL `  K
) `  W ) `  b )  e.  B
)
54 eqid 2258 . . . . . . 7  |-  ( join `  K )  =  (
join `  K )
5519, 54latjcl 14118 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( ( trL `  K ) `  W
) `  ( x `  a ) )  e.  B  /\  ( ( ( trL `  K
) `  W ) `  b )  e.  B
)  ->  ( (
( ( trL `  K
) `  W ) `  ( x `  a
) ) ( join `  K ) ( ( ( trL `  K
) `  W ) `  b ) )  e.  B )
5646, 51, 53, 55syl3anc 1187 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  (
( ( ( trL `  K ) `  W
) `  ( x `  a ) ) (
join `  K )
( ( ( trL `  K ) `  W
) `  b )
)  e.  B )
57 simplrl 739 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  X  e.  B )
5820, 54, 2, 10, 47trlco 30083 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( x `  a )  e.  ( ( LTrn `  K
) `  W )  /\  b  e.  (
( LTrn `  K ) `  W ) )  -> 
( ( ( trL `  K ) `  W
) `  ( (
x `  a )  o.  b ) )  .<_  ( ( ( ( trL `  K ) `
 W ) `  ( x `  a
) ) ( join `  K ) ( ( ( trL `  K
) `  W ) `  b ) ) )
5924, 35, 38, 58syl3anc 1187 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  (
( ( trL `  K
) `  W ) `  ( ( x `  a )  o.  b
) )  .<_  ( ( ( ( trL `  K
) `  W ) `  ( x `  a
) ) ( join `  K ) ( ( ( trL `  K
) `  W ) `  b ) ) )
6019, 2, 10, 47trlcl 29520 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  a  e.  ( ( LTrn `  K
) `  W )
)  ->  ( (
( trL `  K
) `  W ) `  a )  e.  B
)
6124, 29, 60syl2anc 645 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  (
( ( trL `  K
) `  W ) `  a )  e.  B
)
6220, 2, 10, 47, 3tendotp 30117 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  x  e.  ( ( TEndo `  K ) `  W )  /\  a  e.  ( ( LTrn `  K
) `  W )
)  ->  ( (
( trL `  K
) `  W ) `  ( x `  a
) )  .<_  ( ( ( trL `  K
) `  W ) `  a ) )
6324, 25, 29, 62syl3anc 1187 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  (
( ( trL `  K
) `  W ) `  ( x `  a
) )  .<_  ( ( ( trL `  K
) `  W ) `  a ) )
6419, 20, 2, 10, 47, 21diatrl 30401 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  a  e.  ( I `  X
) )  ->  (
( ( trL `  K
) `  W ) `  a )  .<_  X )
6524, 26, 27, 64syl3anc 1187 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  (
( ( trL `  K
) `  W ) `  a )  .<_  X )
6619, 20, 46, 51, 61, 57, 63, 65lattrd 14126 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  (
( ( trL `  K
) `  W ) `  ( x `  a
) )  .<_  X )
6719, 20, 2, 10, 47, 21diatrl 30401 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  b  e.  ( I `  X
) )  ->  (
( ( trL `  K
) `  W ) `  b )  .<_  X )
6824, 26, 36, 67syl3anc 1187 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  (
( ( trL `  K
) `  W ) `  b )  .<_  X )
6919, 20, 54latjle12 14130 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( ( ( ( trL `  K ) `
 W ) `  ( x `  a
) )  e.  B  /\  ( ( ( trL `  K ) `  W
) `  b )  e.  B  /\  X  e.  B ) )  -> 
( ( ( ( ( trL `  K
) `  W ) `  ( x `  a
) )  .<_  X  /\  ( ( ( trL `  K ) `  W
) `  b )  .<_  X )  <->  ( (
( ( trL `  K
) `  W ) `  ( x `  a
) ) ( join `  K ) ( ( ( trL `  K
) `  W ) `  b ) )  .<_  X ) )
7046, 51, 53, 57, 69syl13anc 1189 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  (
( ( ( ( trL `  K ) `
 W ) `  ( x `  a
) )  .<_  X  /\  ( ( ( trL `  K ) `  W
) `  b )  .<_  X )  <->  ( (
( ( trL `  K
) `  W ) `  ( x `  a
) ) ( join `  K ) ( ( ( trL `  K
) `  W ) `  b ) )  .<_  X ) )
7166, 68, 70mpbi2and 892 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  (
( ( ( trL `  K ) `  W
) `  ( x `  a ) ) (
join `  K )
( ( ( trL `  K ) `  W
) `  b )
)  .<_  X )
7219, 20, 46, 49, 56, 57, 59, 71lattrd 14126 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  (
( ( trL `  K
) `  W ) `  ( ( x `  a )  o.  b
) )  .<_  X )
7319, 20, 2, 10, 47, 21diaelval 30390 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
( ( x `  a )  o.  b
)  e.  ( I `
 X )  <->  ( (
( x `  a
)  o.  b )  e.  ( ( LTrn `  K ) `  W
)  /\  ( (
( trL `  K
) `  W ) `  ( ( x `  a )  o.  b
) )  .<_  X ) ) )
7473adantr 453 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  (
( ( x `  a )  o.  b
)  e.  ( I `
 X )  <->  ( (
( x `  a
)  o.  b )  e.  ( ( LTrn `  K ) `  W
)  /\  ( (
( trL `  K
) `  W ) `  ( ( x `  a )  o.  b
) )  .<_  X ) ) )
7544, 72, 74mpbir2and 893 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  (
( x `  a
)  o.  b )  e.  ( I `  X ) )
7642, 75eqeltrd 2332 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  ( x  e.  ( ( TEndo `  K
) `  W )  /\  a  e.  (
I `  X )  /\  b  e.  (
I `  X )
) )  ->  (
( x ( .s
`  U ) a ) ( +g  `  U
) b )  e.  ( I `  X
) )
771, 9, 14, 15, 16, 18, 22, 23, 76islssd 15655 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
I `  X )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   class class class wbr 3997    o. ccom 4665   ` cfv 4673  (class class class)co 5792   Basecbs 13110   +g cplusg 13170  Scalarcsca 13173   .scvsca 13174   lecple 13177   joincjn 14040   Latclat 14113   LSubSpclss 15651   HLchlt 28707   LHypclh 29340   LTrncltrn 29457   trLctrl 29514   TEndoctendo 30108   DVecAcdveca 30358   DIsoAcdia 30385
This theorem is referenced by:  diasslssN  30416  dia2dimlem5  30425  dia2dimlem7  30427  dia2dimlem9  30429  dia2dimlem10  30430  dia2dimlem13  30433  diblsmopel  30528
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-undef 6264  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-oadd 6451  df-er 6628  df-map 6742  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-n 9715  df-2 9772  df-3 9773  df-4 9774  df-5 9775  df-6 9776  df-n0 9933  df-z 9992  df-uz 10198  df-fz 10749  df-struct 13112  df-ndx 13113  df-slot 13114  df-base 13115  df-plusg 13183  df-mulr 13184  df-sca 13186  df-vsca 13187  df-poset 14042  df-plt 14054  df-lub 14070  df-glb 14071  df-join 14072  df-meet 14073  df-p0 14107  df-p1 14108  df-lat 14114  df-clat 14176  df-lss 15652  df-oposet 28533  df-ol 28535  df-oml 28536  df-covers 28623  df-ats 28624  df-atl 28655  df-cvlat 28679  df-hlat 28708  df-llines 28854  df-lplanes 28855  df-lvols 28856  df-lines 28857  df-psubsp 28859  df-pmap 28860  df-padd 29152  df-lhyp 29344  df-laut 29345  df-ldil 29460  df-ltrn 29461  df-trl 29515  df-tendo 30111  df-edring 30113  df-dveca 30359  df-disoa 30386
  Copyright terms: Public domain W3C validator