Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaord Unicode version

Theorem diaord 30505
Description: The partial isomorphism A for a lattice  K is order-preserving in the region under co-atom  W. Part of Lemma M of [Crawley] p. 120 line 28. (Contributed by NM, 26-Nov-2013.)
Hypotheses
Ref Expression
dia11.b  |-  B  =  ( Base `  K
)
dia11.l  |-  .<_  =  ( le `  K )
dia11.h  |-  H  =  ( LHyp `  K
)
dia11.i  |-  I  =  ( ( DIsoA `  K
) `  W )
Assertion
Ref Expression
diaord  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( ( I `  X )  C_  (
I `  Y )  <->  X 
.<_  Y ) )
Dummy variable  f is distinct from all other variables.

Proof of Theorem diaord
StepHypRef Expression
1 dia11.b . . . . 5  |-  B  =  ( Base `  K
)
2 dia11.l . . . . 5  |-  .<_  =  ( le `  K )
3 dia11.h . . . . 5  |-  H  =  ( LHyp `  K
)
4 eqid 2285 . . . . 5  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
5 eqid 2285 . . . . 5  |-  ( ( trL `  K ) `
 W )  =  ( ( trL `  K
) `  W )
6 dia11.i . . . . 5  |-  I  =  ( ( DIsoA `  K
) `  W )
71, 2, 3, 4, 5, 6diaval 30490 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
I `  X )  =  { f  e.  ( ( LTrn `  K
) `  W )  |  ( ( ( trL `  K ) `
 W ) `  f )  .<_  X }
)
873adant3 977 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( I `  X
)  =  { f  e.  ( ( LTrn `  K ) `  W
)  |  ( ( ( trL `  K
) `  W ) `  f )  .<_  X }
)
91, 2, 3, 4, 5, 6diaval 30490 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  (
I `  Y )  =  { f  e.  ( ( LTrn `  K
) `  W )  |  ( ( ( trL `  K ) `
 W ) `  f )  .<_  Y }
)
1093adant2 976 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( I `  Y
)  =  { f  e.  ( ( LTrn `  K ) `  W
)  |  ( ( ( trL `  K
) `  W ) `  f )  .<_  Y }
)
118, 10sseq12d 3209 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( ( I `  X )  C_  (
I `  Y )  <->  { f  e.  ( (
LTrn `  K ) `  W )  |  ( ( ( trL `  K
) `  W ) `  f )  .<_  X }  C_ 
{ f  e.  ( ( LTrn `  K
) `  W )  |  ( ( ( trL `  K ) `
 W ) `  f )  .<_  Y }
) )
12 eqid 2285 . . . 4  |-  ( Atoms `  K )  =  (
Atoms `  K )
131, 2, 12, 3, 4, 5trlord 30026 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( X  .<_  Y  <->  A. f  e.  ( ( LTrn `  K
) `  W )
( ( ( ( trL `  K ) `
 W ) `  f )  .<_  X  -> 
( ( ( trL `  K ) `  W
) `  f )  .<_  Y ) ) )
14 ss2rab 3251 . . 3  |-  ( { f  e.  ( (
LTrn `  K ) `  W )  |  ( ( ( trL `  K
) `  W ) `  f )  .<_  X }  C_ 
{ f  e.  ( ( LTrn `  K
) `  W )  |  ( ( ( trL `  K ) `
 W ) `  f )  .<_  Y }  <->  A. f  e.  ( (
LTrn `  K ) `  W ) ( ( ( ( trL `  K
) `  W ) `  f )  .<_  X  -> 
( ( ( trL `  K ) `  W
) `  f )  .<_  Y ) )
1513, 14syl6rbbr 257 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( { f  e.  ( ( LTrn `  K
) `  W )  |  ( ( ( trL `  K ) `
 W ) `  f )  .<_  X }  C_ 
{ f  e.  ( ( LTrn `  K
) `  W )  |  ( ( ( trL `  K ) `
 W ) `  f )  .<_  Y }  <->  X 
.<_  Y ) )
1611, 15bitrd 246 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( ( I `  X )  C_  (
I `  Y )  <->  X 
.<_  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685   A.wral 2545   {crab 2549    C_ wss 3154   class class class wbr 4025   ` cfv 5222   Basecbs 13143   lecple 13210   Atomscatm 28721   HLchlt 28808   LHypclh 29441   LTrncltrn 29558   trLctrl 29615   DIsoAcdia 30486
This theorem is referenced by:  dia11N  30506  dia2dimlem10  30531  dibord  30617
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-undef 6292  df-riota 6300  df-map 6770  df-poset 14075  df-plt 14087  df-lub 14103  df-glb 14104  df-join 14105  df-meet 14106  df-p0 14140  df-p1 14141  df-lat 14147  df-clat 14209  df-oposet 28634  df-ol 28636  df-oml 28637  df-covers 28724  df-ats 28725  df-atl 28756  df-cvlat 28780  df-hlat 28809  df-llines 28955  df-lplanes 28956  df-lvols 28957  df-lines 28958  df-psubsp 28960  df-pmap 28961  df-padd 29253  df-lhyp 29445  df-laut 29446  df-ldil 29561  df-ltrn 29562  df-trl 29616  df-disoa 30487
  Copyright terms: Public domain W3C validator