Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaval Structured version   Unicode version

Theorem diaval 31767
Description: The partial isomorphism A for a lattice  K. Definition of isomorphism map in [Crawley] p. 120 line 24. (Contributed by NM, 15-Oct-2013.)
Hypotheses
Ref Expression
diaval.b  |-  B  =  ( Base `  K
)
diaval.l  |-  .<_  =  ( le `  K )
diaval.h  |-  H  =  ( LHyp `  K
)
diaval.t  |-  T  =  ( ( LTrn `  K
) `  W )
diaval.r  |-  R  =  ( ( trL `  K
) `  W )
diaval.i  |-  I  =  ( ( DIsoA `  K
) `  W )
Assertion
Ref Expression
diaval  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
I `  X )  =  { f  e.  T  |  ( R `  f )  .<_  X }
)
Distinct variable groups:    f, K    T, f    f, W    f, X
Allowed substitution hints:    B( f)    R( f)    H( f)    I( f)    .<_ ( f)    V( f)

Proof of Theorem diaval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diaval.b . . . . 5  |-  B  =  ( Base `  K
)
2 diaval.l . . . . 5  |-  .<_  =  ( le `  K )
3 diaval.h . . . . 5  |-  H  =  ( LHyp `  K
)
4 diaval.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
5 diaval.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
6 diaval.i . . . . 5  |-  I  =  ( ( DIsoA `  K
) `  W )
71, 2, 3, 4, 5, 6diafval 31766 . . . 4  |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  =  ( x  e.  { y  e.  B  |  y  .<_  W }  |->  { f  e.  T  |  ( R `  f ) 
.<_  x } ) )
87adantr 452 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  I  =  ( x  e. 
{ y  e.  B  |  y  .<_  W }  |->  { f  e.  T  |  ( R `  f )  .<_  x }
) )
98fveq1d 5722 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
I `  X )  =  ( ( x  e.  { y  e.  B  |  y  .<_  W }  |->  { f  e.  T  |  ( R `  f ) 
.<_  x } ) `  X ) )
10 simpr 448 . . . 4  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( X  e.  B  /\  X  .<_  W ) )
11 breq1 4207 . . . . 5  |-  ( y  =  X  ->  (
y  .<_  W  <->  X  .<_  W ) )
1211elrab 3084 . . . 4  |-  ( X  e.  { y  e.  B  |  y  .<_  W }  <->  ( X  e.  B  /\  X  .<_  W ) )
1310, 12sylibr 204 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  X  e.  { y  e.  B  |  y  .<_  W }
)
14 breq2 4208 . . . . 5  |-  ( x  =  X  ->  (
( R `  f
)  .<_  x  <->  ( R `  f )  .<_  X ) )
1514rabbidv 2940 . . . 4  |-  ( x  =  X  ->  { f  e.  T  |  ( R `  f ) 
.<_  x }  =  {
f  e.  T  | 
( R `  f
)  .<_  X } )
16 eqid 2435 . . . 4  |-  ( x  e.  { y  e.  B  |  y  .<_  W }  |->  { f  e.  T  |  ( R `  f ) 
.<_  x } )  =  ( x  e.  {
y  e.  B  | 
y  .<_  W }  |->  { f  e.  T  | 
( R `  f
)  .<_  x } )
17 fvex 5734 . . . . . 6  |-  ( (
LTrn `  K ) `  W )  e.  _V
184, 17eqeltri 2505 . . . . 5  |-  T  e. 
_V
1918rabex 4346 . . . 4  |-  { f  e.  T  |  ( R `  f ) 
.<_  X }  e.  _V
2015, 16, 19fvmpt 5798 . . 3  |-  ( X  e.  { y  e.  B  |  y  .<_  W }  ->  ( ( x  e.  { y  e.  B  |  y 
.<_  W }  |->  { f  e.  T  |  ( R `  f ) 
.<_  x } ) `  X )  =  {
f  e.  T  | 
( R `  f
)  .<_  X } )
2113, 20syl 16 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
( x  e.  {
y  e.  B  | 
y  .<_  W }  |->  { f  e.  T  | 
( R `  f
)  .<_  x } ) `
 X )  =  { f  e.  T  |  ( R `  f )  .<_  X }
)
229, 21eqtrd 2467 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
I `  X )  =  { f  e.  T  |  ( R `  f )  .<_  X }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   {crab 2701   _Vcvv 2948   class class class wbr 4204    e. cmpt 4258   ` cfv 5446   Basecbs 13461   lecple 13528   LHypclh 30718   LTrncltrn 30835   trLctrl 30892   DIsoAcdia 31763
This theorem is referenced by:  diaelval  31768  diass  31777  diaord  31782  dia0  31787  dia1N  31788  diassdvaN  31795  dia1dim  31796  cdlemm10N  31853  dibval3N  31881  dihwN  32024
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-disoa 31764
  Copyright terms: Public domain W3C validator