Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dib1dim Structured version   Unicode version

Theorem dib1dim 31963
Description: Two expressions for the 1-dimensional subspaces of vector space H. (Contributed by NM, 24-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dib1dim.b  |-  B  =  ( Base `  K
)
dib1dim.h  |-  H  =  ( LHyp `  K
)
dib1dim.t  |-  T  =  ( ( LTrn `  K
) `  W )
dib1dim.r  |-  R  =  ( ( trL `  K
) `  W )
dib1dim.e  |-  E  =  ( ( TEndo `  K
) `  W )
dib1dim.o  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
dib1dim.i  |-  I  =  ( ( DIsoB `  K
) `  W )
Assertion
Ref Expression
dib1dim  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( I `  ( R `  F
) )  =  {
g  e.  ( T  X.  E )  |  E. s  e.  E  g  =  <. ( s `
 F ) ,  O >. } )
Distinct variable groups:    B, h    g, s, E    g, F, s    H, s    h, s, K    g, O, s    R, s    g, h, T, s    h, W, s
Allowed substitution hints:    B( g, s)    R( g, h)    E( h)    F( h)    H( g, h)    I(
g, h, s)    K( g)    O( h)    W( g)

Proof of Theorem dib1dim
Dummy variables  f 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 444 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( K  e.  HL  /\  W  e.  H ) )
2 dib1dim.b . . . . 5  |-  B  =  ( Base `  K
)
3 dib1dim.h . . . . 5  |-  H  =  ( LHyp `  K
)
4 dib1dim.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
5 dib1dim.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
62, 3, 4, 5trlcl 30961 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  e.  B
)
7 eqid 2436 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
87, 3, 4, 5trlle 30981 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F ) ( le
`  K ) W )
9 dib1dim.o . . . . 5  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
10 eqid 2436 . . . . 5  |-  ( (
DIsoA `  K ) `  W )  =  ( ( DIsoA `  K ) `  W )
11 dib1dim.i . . . . 5  |-  I  =  ( ( DIsoB `  K
) `  W )
122, 7, 3, 4, 9, 10, 11dibval2 31942 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R `
 F )  e.  B  /\  ( R `
 F ) ( le `  K ) W ) )  -> 
( I `  ( R `  F )
)  =  ( ( ( ( DIsoA `  K
) `  W ) `  ( R `  F
) )  X.  { O } ) )
131, 6, 8, 12syl12anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( I `  ( R `  F
) )  =  ( ( ( ( DIsoA `  K ) `  W
) `  ( R `  F ) )  X. 
{ O } ) )
14 relxp 4983 . . . 4  |-  Rel  (
( ( ( DIsoA `  K ) `  W
) `  ( R `  F ) )  X. 
{ O } )
15 opelxp 4908 . . . . 5  |-  ( <.
f ,  t >.  e.  ( ( ( (
DIsoA `  K ) `  W ) `  ( R `  F )
)  X.  { O } )  <->  ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  ( R `  F ) )  /\  t  e.  { O } ) )
16 dib1dim.e . . . . . . . . 9  |-  E  =  ( ( TEndo `  K
) `  W )
173, 4, 5, 16, 10dia1dim 31859 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( (
( DIsoA `  K ) `  W ) `  ( R `  F )
)  =  { f  |  E. s  e.  E  f  =  ( s `  F ) } )
1817abeq2d 2545 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( f  e.  ( ( ( DIsoA `  K ) `  W
) `  ( R `  F ) )  <->  E. s  e.  E  f  =  ( s `  F
) ) )
1918anbi1d 686 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( (
f  e.  ( ( ( DIsoA `  K ) `  W ) `  ( R `  F )
)  /\  t  e.  { O } )  <->  ( E. s  e.  E  f  =  ( s `  F )  /\  t  e.  { O } ) ) )
203, 4, 16tendocl 31564 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  F  e.  T
)  ->  ( s `  F )  e.  T
)
21203expa 1153 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E )  /\  F  e.  T )  ->  (
s `  F )  e.  T )
2221an32s 780 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  s  e.  E )  ->  (
s `  F )  e.  T )
232, 3, 4, 16, 9tendo0cl 31587 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O  e.  E )
2423ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  s  e.  E )  ->  O  e.  E )
2522, 24jca 519 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  s  e.  E )  ->  (
( s `  F
)  e.  T  /\  O  e.  E )
)
26 eleq1 2496 . . . . . . . . . . 11  |-  ( f  =  ( s `  F )  ->  (
f  e.  T  <->  ( s `  F )  e.  T
) )
27 eleq1 2496 . . . . . . . . . . 11  |-  ( t  =  O  ->  (
t  e.  E  <->  O  e.  E ) )
2826, 27bi2anan9 844 . . . . . . . . . 10  |-  ( ( f  =  ( s `
 F )  /\  t  =  O )  ->  ( ( f  e.  T  /\  t  e.  E )  <->  ( (
s `  F )  e.  T  /\  O  e.  E ) ) )
2925, 28syl5ibrcom 214 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  s  e.  E )  ->  (
( f  =  ( s `  F )  /\  t  =  O )  ->  ( f  e.  T  /\  t  e.  E ) ) )
3029rexlimdva 2830 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( E. s  e.  E  (
f  =  ( s `
 F )  /\  t  =  O )  ->  ( f  e.  T  /\  t  e.  E
) ) )
3130pm4.71rd 617 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( E. s  e.  E  (
f  =  ( s `
 F )  /\  t  =  O )  <->  ( ( f  e.  T  /\  t  e.  E
)  /\  E. s  e.  E  ( f  =  ( s `  F )  /\  t  =  O ) ) ) )
32 elsn 3829 . . . . . . . . 9  |-  ( t  e.  { O }  <->  t  =  O )
3332anbi2i 676 . . . . . . . 8  |-  ( ( E. s  e.  E  f  =  ( s `  F )  /\  t  e.  { O } )  <-> 
( E. s  e.  E  f  =  ( s `  F )  /\  t  =  O ) )
34 r19.41v 2861 . . . . . . . 8  |-  ( E. s  e.  E  ( f  =  ( s `
 F )  /\  t  =  O )  <->  ( E. s  e.  E  f  =  ( s `  F )  /\  t  =  O ) )
3533, 34bitr4i 244 . . . . . . 7  |-  ( ( E. s  e.  E  f  =  ( s `  F )  /\  t  e.  { O } )  <->  E. s  e.  E  ( f  =  ( s `  F )  /\  t  =  O ) )
36 df-3an 938 . . . . . . 7  |-  ( ( f  e.  T  /\  t  e.  E  /\  E. s  e.  E  ( f  =  ( s `
 F )  /\  t  =  O )
)  <->  ( ( f  e.  T  /\  t  e.  E )  /\  E. s  e.  E  (
f  =  ( s `
 F )  /\  t  =  O )
) )
3731, 35, 363bitr4g 280 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( ( E. s  e.  E  f  =  ( s `  F )  /\  t  e.  { O } )  <-> 
( f  e.  T  /\  t  e.  E  /\  E. s  e.  E  ( f  =  ( s `  F )  /\  t  =  O ) ) ) )
3819, 37bitrd 245 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( (
f  e.  ( ( ( DIsoA `  K ) `  W ) `  ( R `  F )
)  /\  t  e.  { O } )  <->  ( f  e.  T  /\  t  e.  E  /\  E. s  e.  E  ( f  =  ( s `  F )  /\  t  =  O ) ) ) )
3915, 38syl5bb 249 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( <. f ,  t >.  e.  ( ( ( ( DIsoA `  K ) `  W
) `  ( R `  F ) )  X. 
{ O } )  <-> 
( f  e.  T  /\  t  e.  E  /\  E. s  e.  E  ( f  =  ( s `  F )  /\  t  =  O ) ) ) )
4014, 39opabbi2dv 5022 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( (
( ( DIsoA `  K
) `  W ) `  ( R `  F
) )  X.  { O } )  =  { <. f ,  t >.  |  ( f  e.  T  /\  t  e.  E  /\  E. s  e.  E  ( f  =  ( s `  F )  /\  t  =  O ) ) } )
4113, 40eqtrd 2468 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( I `  ( R `  F
) )  =  { <. f ,  t >.  |  ( f  e.  T  /\  t  e.  E  /\  E. s  e.  E  ( f  =  ( s `  F )  /\  t  =  O ) ) } )
42 eqeq1 2442 . . . . 5  |-  ( g  =  <. f ,  t
>.  ->  ( g  = 
<. ( s `  F
) ,  O >.  <->  <. f ,  t >.  =  <. ( s `  F ) ,  O >. )
)
43 vex 2959 . . . . . 6  |-  f  e. 
_V
44 vex 2959 . . . . . 6  |-  t  e. 
_V
4543, 44opth 4435 . . . . 5  |-  ( <.
f ,  t >.  =  <. ( s `  F ) ,  O >.  <-> 
( f  =  ( s `  F )  /\  t  =  O ) )
4642, 45syl6bb 253 . . . 4  |-  ( g  =  <. f ,  t
>.  ->  ( g  = 
<. ( s `  F
) ,  O >.  <->  (
f  =  ( s `
 F )  /\  t  =  O )
) )
4746rexbidv 2726 . . 3  |-  ( g  =  <. f ,  t
>.  ->  ( E. s  e.  E  g  =  <. ( s `  F
) ,  O >.  <->  E. s  e.  E  (
f  =  ( s `
 F )  /\  t  =  O )
) )
4847rabxp 4914 . 2  |-  { g  e.  ( T  X.  E )  |  E. s  e.  E  g  =  <. ( s `  F ) ,  O >. }  =  { <. f ,  t >.  |  ( f  e.  T  /\  t  e.  E  /\  E. s  e.  E  ( f  =  ( s `
 F )  /\  t  =  O )
) }
4941, 48syl6eqr 2486 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( I `  ( R `  F
) )  =  {
g  e.  ( T  X.  E )  |  E. s  e.  E  g  =  <. ( s `
 F ) ,  O >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   E.wrex 2706   {crab 2709   {csn 3814   <.cop 3817   class class class wbr 4212   {copab 4265    e. cmpt 4266    _I cid 4493    X. cxp 4876    |` cres 4880   ` cfv 5454   Basecbs 13469   lecple 13536   HLchlt 30148   LHypclh 30781   LTrncltrn 30898   trLctrl 30955   TEndoctendo 31549   DIsoAcdia 31826   DIsoBcdib 31936
This theorem is referenced by:  dib1dim2  31966
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-undef 6543  df-riota 6549  df-map 7020  df-poset 14403  df-plt 14415  df-lub 14431  df-glb 14432  df-join 14433  df-meet 14434  df-p0 14468  df-p1 14469  df-lat 14475  df-clat 14537  df-oposet 29974  df-ol 29976  df-oml 29977  df-covers 30064  df-ats 30065  df-atl 30096  df-cvlat 30120  df-hlat 30149  df-llines 30295  df-lplanes 30296  df-lvols 30297  df-lines 30298  df-psubsp 30300  df-pmap 30301  df-padd 30593  df-lhyp 30785  df-laut 30786  df-ldil 30901  df-ltrn 30902  df-trl 30956  df-tendo 31552  df-disoa 31827  df-dib 31937
  Copyright terms: Public domain W3C validator